Poisson-Delaunay Mosaics of Order k
- PMID: 31749513
- PMCID: PMC6828637
- DOI: 10.1007/s00454-018-0049-2
Poisson-Delaunay Mosaics of Order k
Abstract
The order-k Voronoi tessellation of a locally finite set decomposes into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
Keywords: Delaunay mosaics of order k; Discrete Morse theory; Poisson point process; Stochastic geometry; Voronoi tessellations of order k.
© The Author(s) 2018.
Figures




References
-
- Aurenhammer F. Power diagrams: properties, algorithms and applications. SIAM J. Comput. 1987;16(1):78–96.
-
- Aurenhammer F. A new duality result concerning Voronoi diagrams. Discrete Comput. Geom. 1990;5(3):243–254.
-
- Aurenhammer F. Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 1991;23(3):345–405.
-
- Bauer U, Edelsbrunner H. The Morse theory of Čech and Delaunay complexes. Trans. Am. Math. Soc. 2017;369(5):3741–3762.
-
- Edelsbrunner H, Nikitenko A, Reitzner M. Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions. Adv. Appl. Prob. 2017;49(3):745–767.
LinkOut - more resources
Full Text Sources