Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 21;19(1):508.
doi: 10.1186/s12870-019-2068-4.

Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize

Affiliations

Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize

Xiao-Gui Liang et al. BMC Plant Biol. .

Abstract

Background: Carbohydrate partitioning and utilization is a key determinant of growth rate and of yield in plants and crops. There are few studies on crops in field conditions. In Arabidopsis, starch accumulation in leaves is a negative indicator of growth rate.

Results: Here, we wished to establish if starch accumulation in leaves could potentially be a marker for growth rate and yield in crops such as maize. We characterized daily patterns of non-structural carbohydrate (NSC) at different growth stages over two seasons for maize hybrids in the field. In 27 commercial hybrids, we found a significant negative relationship between residual starch in leaves and plant growth, but not with final yield and biomass. We then focused on three typical hybrids and established a method for calculation of C turnover in photosynthetic leaves that took into account photosynthesis, leaf area and NSC accumulation. The ratios of stored NSC decreased from approximately 15% to less than 4% with ongoing ontogeny changes from V7 to 28 days after pollination.

Conclusion: The proportion rather than absolute amount of carbon partitioned to starch in leaves at all stages of development related well with yield and biomass accumulation. It is proposed that screening plants at an early vegetative growth stage such as V7 for partitioning into storage may provide a prospective method for maize hybrid selection. Our study provides the basis for further validation as a screening tool for yield.

Keywords: Carbon allocation; Hybrids; Maize; Non-structural carbohydrates; Ontogeny; Photosynthesis; Starch.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Relationship of residual starch at the 9th leaf expanded stage with the corresponding growth amount (a), relative growth rate (b), final yield (c) and maturity biomass (d) for 27 commercial maize hybrids in the 2015 season. Abbreviations: DM, shoot dry matter
Fig. 2
Fig. 2
Seasonal changes of total above-ground biomass (DM) (a) and leaf area index (LAI) (b) in the 2016 season. * and ** indicate significance at P ≤ 0.05 and P ≤ 0.01, respectively. No significant difference among the points for certain sample time without asterisk marked. Abbreviations: DAS, days after sowing
Fig. 3
Fig. 3
Diurnal changes of net photosynthesis rates in the newly expanded leaves at the periods of 7th leaf expanded (a) and 13th leaf expanded (b) and the ear leaves at 28 days after pollination (c) for maize hybrids. * and ** indicate significant levels at P ≤ 0.05 and P ≤ 0.01, respectively
Fig. 4
Fig. 4
Diurnal changes of starch (solid lines) and total soluble carbohydrates (TSC, short dash lines) in the newly expanded leaves at the periods of 7th leaf expanded (a), 13th leaf expanded (b) and the ear leaves at 28 days after pollination (c). Maize hybrids Xianyu335 (XY335), Denghai605 (DH605) and Zhengdan958 (ZD958) are indicated by hollow square, circle and triangle, respectively
Fig. 5
Fig. 5
Diurnal changes of starch (solid lines) and total soluble carbohydrates (TSC, short dash lines) in the main sink tissues at the periods of 7th leaf expanded (a), 13th leaf expanded (b) and 28 days after pollination (c). Stem and grain were characterized as sink at vegetative and reproductive stages, respectively. Maize hybrids of Xianyu335 (XY335), Denghai605 (DH605) and Zhengdan958 (ZD958) are indicated by hollow square, circle and triangle, respectively
Fig. 6
Fig. 6
Diurnal changes of starch (solid lines) and total soluble carbohydrates (TSC, short dash lines) in the transport tissues at the periods of 7th leaf expanded (a), 13th leaf expanded (b) and 28 days after pollination (c). Sheath and stem were characterized as transport tissues at vegetative and reproductive stages, respectively. Maize hybrids of Xianyu335 (XY335), Denghai605 (DH605) and Zhengdan958 (ZD958) were indicated by hollow square, circle and triangle, respectively
Fig. 7
Fig. 7
Relationships between final yield (a) and biomass (b) and the ratios of starch to daily carbon accumulation in leaves at different growth stages. Hollow square, circle and triangle represent for the stages of 7th leaf expanded (V7), 13th leaf expanded (V13), and 28 days after pollination (DAP), respectively. Black, red and blue points represent for XY335, DH605 and ZD958, respectively

References

    1. Smith AM, Stitt M. Coordination of carbon supply and plant growth. Plant Cell Environ. 2007;30:1126–1149. doi: 10.1111/j.1365-3040.2007.01708.x. - DOI - PubMed
    1. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant Biol. 2008;59:417–441. doi: 10.1146/annurev.arplant.59.032607.092945. - DOI - PubMed
    1. Paul MJ, Oszvald M, Jesus C, Rajulu C, Griffiths CA. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization. J Exp Bot. 2017;68:4455–4462. doi: 10.1093/jxb/erx083. - DOI - PubMed
    1. Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65:799–807. doi: 10.1093/jxb/ert474. - DOI - PubMed
    1. Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol. 2014;57:67–79. doi: 10.1007/s12374-014-0902-7. - DOI - PMC - PubMed

LinkOut - more resources