Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Oct 17;9(26):8001-8017.
doi: 10.7150/thno.37097. eCollection 2019.

Extracellular vesicle-based drug delivery systems for cancer treatment

Affiliations
Review

Extracellular vesicle-based drug delivery systems for cancer treatment

Sierra Walker et al. Theranostics. .

Abstract

Extracellular vesicles (EVs) are naturally occurring cell-secreted nanoparticles that play important roles in many physiological and pathological processes. EVs enable intercellular communication by serving as delivery vehicles for a wide range of endogenous cargo molecules, such as RNAs, proteins, carbohydrates, and lipids. EVs have also been found to display tissue tropism mediated by surface molecules, such as integrins and glycans, making them promising for drug delivery applications. Various methods can be used to load therapeutic agents into EVs, and additional modification strategies have been employed to prolong circulation and improve targeting. This review gives an overview of EV-based drug delivery strategies in cancer therapy.

Keywords: cancer therapy; drug delivery; extracellular vesicle; nanomedicine.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Examples of extracellular vesicle (EV) isolation methods. Commonly used isolation techniques include ultracentrifugation (A), differential centrifugation (A), tangential flow filtration (C), size exclusion chromatography (B), and precipitation (D). These methods result in various levels of purity.
Figure 2
Figure 2
Examples of drug loading methods post-EV isolation. After EVs have been isolated from biological sources, drugs can be loaded into EVs through various physical [e.g. electroporation (A), sonication (B), freeze/thaw cycles (D), mixing (E), and extrusion (C)] or chemical methods [e.g. use of saponin (F) and transfection reagents (G)].
Figure 3
Figure 3
Examples of EV components that aid in drug delivery. EVs can express intrinsic targeting ligands, such as glycans and integrins. EVs can also be engineered to express extrinsic targeting ligands, immuno-evasive agents, and stimuli-responsive components, such as those that respond to the acidic pH of tumors. DEAP, 3-(diethylamino)propylamine; GALA, glutamic acid-alanine-leucine-alanine; IL3, interleukin 3; iRGD, internalizing arginine-glycine-aspartic acid; PEG, polyethylene glycol; RVG, rabies viral glycoprotein.

References

    1. Sun YZ, Ruan JS, Jiang ZS, Wang L, Wang SM. Extracellular Vesicles: A New Perspective in Tumor Therapy. Biomed Res Int. 2018;2018:2687954. - PMC - PubMed
    1. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. - PMC - PubMed
    1. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11. - PubMed
    1. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:1. 20677. - PMC - PubMed
    1. Royo F, Cossio U, Ruiz de Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale. 2019;11:1531–7. - PubMed

Publication types