Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 4;17(47):10088-10096.
doi: 10.1039/c9ob02202c.

Theoretical calculation studies on the rearrangement mechanisms of arenesulfenanilides to generate o- and p-aminodiphenyl sulfides

Affiliations

Theoretical calculation studies on the rearrangement mechanisms of arenesulfenanilides to generate o- and p-aminodiphenyl sulfides

Guangyan Liu et al. Org Biomol Chem. .

Abstract

The thermal and acid-catalyzed rearrangement mechanisms of arenesulfenanilides were investigated theoretically via density functional theory (DFT) calculations. The results indicate that the o-aminodiphenyl sulfide rearrangement involves a novel S[1,3]-sigmatropic shift followed by tautomerization, while the p-aminodiphenyl sulfide rearrangement proceeds via tandem [3,3]- and [3,3]-sigmatropic shifts followed by tautomerization under thermal conditions. Furthermore, computational studies reveal that water assists the proton shift more efficiently than anilines during tautomerization. Moreover, under the acid-catalyzed conditions, the o-aminodiphenyl sulfide rearrangement involves an S[1,3]-sigmatropic shift similar to that under the thermal conditions, while the p-aminodiphenyl sulfide rearrangement proceeds via cascade S[1,3]- and S[1,3]-sigmatropic shifts followed by water-aided tautomerization. The current theoretical studies provide new insights into the formation mechanism of o/p-aminodiphenyl sulfides in the arenesulfenanilide rearrangement and support the unprecedented suprafacial symmetry-allowed S[1,3]-sigmatropic shift with an inversion of the configuration in the migrating sulfur atom. The mechanism is affected by the reaction medium. Disproportionation of arenesulfenanilides into diaryl disulfides and azobenzenes is a competitive radical pathway during the arenesulfenanilide rearrangements.

PubMed Disclaimer

Publication types

LinkOut - more resources