High-Mobility Hydrogenated Fluorine-Doped Indium Oxide Film for Passivating Contacts c-Si Solar Cells
- PMID: 31756085
- PMCID: PMC6909235
- DOI: 10.1021/acsami.9b14709
High-Mobility Hydrogenated Fluorine-Doped Indium Oxide Film for Passivating Contacts c-Si Solar Cells
Erratum in
-
Correction to "High-Mobility Hydrogenated Fluorine-Doped Indium Oxide Film for Passivating Contacts c-Si Solar Cells".ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12636. doi: 10.1021/acsami.1c02993. Epub 2021 Mar 4. ACS Appl Mater Interfaces. 2021. PMID: 33660505 Free PMC article. No abstract available.
Abstract
Broadband transparent conductive oxide layers with high electron mobility (μe) are essential to further enhance crystalline silicon (c-Si) solar cell performances. Although metallic cation-doped In2O3 thin films with high μe (>60 cm2 V-1 s-1) have been extensively investigated, the research regarding anion doping is still under development. In particular, fluorine-doped indium oxide (IFO) shows promising optoelectrical properties; however, they have not been tested on c-Si solar cells with passivating contacts. Here, we investigate the properties of hydrogenated IFO (IFO:H) films processed at low substrate temperature and power density by varying the water vapor pressure during deposition. The optimized IFO:H shows a remarkably high μe of 87 cm2 V-1 s-1, a carrier density of 1.2 × 1020 cm-3, and resistivity of 6.2 × 10-4 Ω cm. Then, we analyzed the compositional, structural, and optoelectrical properties of the optimal IFO:H film. The high quality of the layer was confirmed by the low Urbach energy of 197 meV, compared to 444 meV obtained on the reference indium tin oxide. We implemented IFO:H into different front/back-contacted solar cells with passivating contacts processed at high and low temperatures, obtaining a significant short-circuit current gain of 1.53 mA cm-2. The best solar cell shows a conversion efficiency of 21.1%.
Keywords: electron mobility; hydrogenated fluorine-doped indium oxide (IFO:H); passivating contacts; silicon heterojunction (SHJ); transparent conductive oxide (TCO).
Conflict of interest statement
The authors declare no competing financial interest.
Figures








References
-
- Melskens J.; van de Loo B. W. H.; Macco B.; Black L. E.; Smit S.; Kessels W. M. M. Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects. IEEE J. Photovoltaics 2018, 8, 373–388. 10.1109/JPHOTOV.2018.2797106. - DOI
-
- Taguchi M.; Yano A.; Tohoda S.; Matsuyama K.; Nakamura Y.; Nishiwaki T.; Fujita K.; Maruyama E. 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer. IEEE J. Photovoltaics 2014, 4, 96–99. 10.1109/JPHOTOV.2013.2282737. - DOI
-
- Yoshikawa K.; Yoshida W.; Irie T.; Kawasaki H.; Konishi K.; Ishibashi H.; Asatani T.; Adachi D.; Kanematsu M.; Uzu H.; Yamamoto K. Exceeding Conversion Efficiency of 26% by Heterojunction Interdigitated Back Contact Solar Cell with Thin Film Si Technology. Sol. Energy Mater. Sol. Cells 2017, 173, 37–42. 10.1016/j.solmat.2017.06.024. - DOI
-
- Richter A.; Benick J.; Feldmann F.; Fell A.; Hermle M.; Glunz S. W. n-Type Si Solar Cells with Passivating Electron Contact: Identifying Sources for Efficiency Limitations by Wafer Thickness and Resistivity Variation. Sol. Energy Mater. Sol. Cells 2017, 173, 96–105. 10.1016/j.solmat.2017.05.042. - DOI
-
- Haase F.; Hollemann C.; Schäfer S.; Merkle A.; Rienäcker M.; Krügener J.; Brendel R.; Peibst R. Laser Contact Openings for Local Poly-Si-Metal Contacts Enabling 26.1%-efficient POLO-IBC Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 186, 184–193. 10.1016/j.solmat.2018.06.020. - DOI
LinkOut - more resources
Full Text Sources
Research Materials