Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 Jan 3;30(1):84-91.
doi: 10.1016/j.numecd.2019.08.017. Epub 2019 Sep 9.

Diabetes diagnosis from administrative claims and estimation of the true prevalence of diabetes among 4.2 million individuals of the Veneto region (North East Italy)

Affiliations
Comparative Study

Diabetes diagnosis from administrative claims and estimation of the true prevalence of diabetes among 4.2 million individuals of the Veneto region (North East Italy)

Enrico Longato et al. Nutr Metab Cardiovasc Dis. .

Abstract

Background and aims: Diabetes can often remain undiagnosed or unregistered in administrative databases long after its onset, even when laboratory test results meet diagnostic criteria. In the present work, we analyse healthcare data of the Veneto Region, North East Italy, with the aims of: (i) developing an algorithm for the identification of diabetes from administrative claims (4,236,007 citizens), (ii) assessing its reliability by comparing its performance with the gold standard clinical diagnosis from a clinical database (7525 patients), (iii) combining the algorithm and the laboratory data of the regional Health Information Exchange (rHIE) system (543,520 subjects) to identify undiagnosed diabetes, and (iv) providing a credible estimate of the true prevalence of diabetes in Veneto.

Methods and results: The proposed algorithm for the identification of diabetes was fed by administrative data related to drug dispensations, outpatient visits, and hospitalisations. Evaluated against a clinical database, the algorithm achieved 95.7% sensitivity, 87.9% specificity, and 97.6% precision. To identify possible cases of undiagnosed diabetes, we applied standard diagnostic criteria to the laboratory test results of the subjects who, according to the algorithm, had no diabetes-related claims. Using a simplified probabilistic model, we corrected our claims-based estimate of known diabetes (6.17% prevalence; 261,303 cases) to account for undiagnosed cases, yielding an estimated total prevalence of 7.50%.

Conclusion: We herein validated an algorithm for the diagnosis of diabetes using administrative claims against the clinical diagnosis. Together with rHIE laboratory data, this allowed to identify possibly undiagnosed diabetes and estimate the true prevalence of diabetes in Veneto.

Keywords: Administrative claims; Diabetes; Health information exchange; Laboratory reports; Prevalence; Undiagnosed diabetes; Veneto.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources