Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan:121:109644.
doi: 10.1016/j.biopha.2019.109644. Epub 2019 Nov 19.

DC-SIGN mediates gastric cancer progression by regulating the JAK2/STAT3 signaling pathway and affecting LncRNA RP11-181G12.2 expression

Affiliations
Free article

DC-SIGN mediates gastric cancer progression by regulating the JAK2/STAT3 signaling pathway and affecting LncRNA RP11-181G12.2 expression

Xiaomeng Li et al. Biomed Pharmacother. 2020 Jan.
Free article

Abstract

Background: The molecular mechanisms of gastric cancer (GC) development are very complicated. Recent studies revealed that DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein (DC-SIGNR) is involved in colon cancer and GC biological processes. However, the exact roles of DC-SIGN in GC remain unrevealed.

Methods: DC-SIGN overexpression and knockdown experiments were performed by using DC-SIGN shRNA or DC-SIGN plasmid to investigate the biological roles of DC-SIGN in proliferation, cell cycle progression, migration and invasion of GC cells in vitro. Furthermore, the lncRNA profiles of SGC-7901 cells with control shRNA and DC-SIGN shRNA were generated by using microarray analysis. Mechanistically, the relationship between DC-SIGN, RP11-181G12.2 and the JAK2/STAT3 signaling pathway was then investigated using qRT-PCR and western blot assays. Additionally, we analyzed DC-SIGN and RP11-181G12.2 expression levels in GC specimens based on the Cancer Genome Atlas database.

Results: In this study, the results showed that DC-SIGN was highly expressed in GC cells and significantly correlated with advanced clinical stage and lymphatic metastasis. Downregulation of DC-SIGN significantly inhibited the proliferation, cell cycle progression, migration and invasion of GC cells in vitro. The reverse results could partly be seen with the upregulation of DC-SIGN. Mechanistically, knockdown of DC-SIGN inactivated the JAK2/STAT3 signaling pathway, and overexpression of DC-SIGN activated the JAK2/STAT3 signaling pathway. In addition, through LncPath microarray analysis, we identified a lncRNA, RP11-181G12.2, that was significantly upregulated after knockdown of DC-SIGN; this was also confirmed by qRT-PCR. Furthermore, RP11-181G12.2 knockdown enhanced DC-SIGN expression in GC cells, further activating the JAK2/STAT3 signaling pathway. In contrast, DC-SIGN overexpression suppressed RP11-181G12.2 expression.

Conclusions: Our study suggests that DC-SIGN might be involved in the progression of GC by regulating the JAK2/STAT3 signaling pathway and affecting lncRNA RP11-181G12.2 expression.

Keywords: DC-SIGN; Gastric cancer; JAK2/STAT3; lncRNA.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources