New Ions for Therapy
- PMID: 31772953
- PMCID: PMC6874199
- DOI: 10.14338/IJPT-15-00027.1
New Ions for Therapy
Abstract
Purpose: Charged particle therapy (CPT) is currently based on the use of protons or carbon ions for the treatment of deep-seated and/or radioresistant tumors, which are known to return poor prognosis in photon treatments. A renovated interest has recently been observed in the possibility of extending the spectrum of ions used in CPT. The potential and limitations of different particle species will be discussed in this work, with special regard to 1H, 4He, 12C, and 16O, that is, those presently available in the most advanced particle therapy clinical centers.
Materials and methods: Literature information has been screened, as well as additional analysis has been performed, aimed at the comparison of basic physical and biological properties of several ions. The research treatment planning system TRiP98 is also employed to compare the dose distribution resulting from exposure to the different ions in different configurations, including the irradiation of hypoxic targets.
Results: Particles of intermediate charge, such as helium and lithium, offer an increased physical selectivity compared with protons, while having reduced biological effectiveness compared with carbon. The latter aspect translates into a less sensitive biological optimization of CPT treatments, though still more effective than protons in killing cancer cells. At the same time, in view of their increased linear energy transfer, heavier ions, like oxygen, are considered attractive, especially for the treatment of hypoxic tumors. While the higher biological dose released in the entrance dose represents in general a drawback for ions heavier than carbon, for oxygen beam this effect may be balanced by the lower dose increase requested to overcome hypoxia.
Conclusions: The possibility of delivering radiation quality-optimized CPT treatments seems to be the new challenge in heavy ion therapy. The potential and limitations of different particle species, according to different sensitivity and morphological scenarios, makes combined treatments of different ions an intriguing option. New ions could open new scenarios in cancer therapy, but would represent as well an opportunity for the treatment of specific non-cancer disease such as atrial fibrillation.
Keywords: Bragg peak; OER; RBE; charged particle therapy; heavy ions; light ions.
© Copyright 2015 International Journal of Particle Therapy.
Conflict of interest statement
Conflicts of interest: The authors have no conflicts to disclose.
Figures





References
-
- Hall E. Protons for radiotherapy: a 1946 proposal. Lancet Oncol. 2009;10:196. - PubMed
-
- Jermann M. Particle therapy statistics in 2013. Int J Particle Ther. 2014;1:40–3.
-
- Schoenthaler R, Castro JR, Petti PL, Baken-Brown K, Phillips TL. Charged particle irradiation of sacral chordomas. Int J Radiat Oncol Biol Phys. 1993;26:291–8. - PubMed
-
- Char DH, Quivey JM, Castro JR, Kroll S, Phillips T. Helium ions versus iodine 125 brachytherapy in the management of uveal melanoma. A prospective, randomized, dynamically balanced trial. Ophthalmology. 1993;100:1547–54. - PubMed
-
- Castro JR, Linstadt DE, Bahary JP, Petti PL, Daftari I, Collier JM, Gutin PH, Gauger G, Phillips TL. Experience in charged particle irradiation of tumors of the skull base: 1977-1992. Int J Radiat Oncol Biol Phys. 1994;29:647–55. - PubMed
LinkOut - more resources
Full Text Sources