Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 14;30(5):2740-2754.
doi: 10.1093/cercor/bhz271.

Neural Transcription Correlates of Multimodal Cortical Phenotypes during Development

Affiliations

Neural Transcription Correlates of Multimodal Cortical Phenotypes during Development

Diliana Pecheva et al. Cereb Cortex. .

Abstract

During development, cellular events such as cell proliferation, migration, and synaptogenesis determine the structural organization of the brain. These processes are driven in part by spatiotemporally regulated gene expression. We investigated how the genetic signatures of specific neural cell types shape cortical organization of the human brain throughout infancy and childhood. Using a transcriptional atlas and in vivo magnetic resonance imaging (MRI) data, we demonstrated time-dependent associations between the expression levels of neuronal and glial genes and cortical macro- and microstructure. Neonatal cortical phenotypes were associated with prenatal glial but not neuronal gene expression. These associations reflect cell migration and proliferation during fetal development. Childhood cortical phenotypes were associated with neuronal and astrocyte gene expression related to synaptic signaling processes, reflecting the refinement of cortical connections. These findings indicate that sequential developmental stages contribute to distinct MRI measures at different time points. This helps to bridge the gap between the genetic mechanisms driving cellular changes and widely used neuroimaging techniques.

Keywords: MRI; cortical microstructure; cortical thickness; early development; gene expression.

PubMed Disclaimer

Publication types