Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?
- PMID: 31775882
- PMCID: PMC6880594
- DOI: 10.1186/s40425-019-0799-2
Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?
Abstract
The immunologic landscape of the host and tumor play key roles in determining how patients will benefit from immunotherapy, and a better understanding of these factors could help inform how well a tumor responds to treatment. Recent advances in immunotherapy and in our understanding of the immune system have revolutionized the treatment landscape for many advanced cancers. Notably, the use of immune checkpoint inhibitors has demonstrated durable responses in various malignancies. However, the response to such treatments is variable and currently unpredictable, the availability of predictive biomarkers is limited, and a substantial proportion of patients do not respond to immune checkpoint therapy. Identification and investigation of potential biomarkers that may predict sensitivity to immunotherapy is an area of active research. It is envisaged that a deeper understanding of immunity will aid in harnessing the full potential of immunotherapy, and allow appropriate patients to receive the most appropriate treatments. In addition to the identification of new biomarkers, the platforms and assays required to accurately and reproducibly measure biomarkers play a key role in ensuring consistency of measurement both within and between patients. In this review we discuss the current knowledge in the area of peripheral immune-based biomarkers, drawing information from the results of recent clinical studies of a number of different immunotherapy modalities in the treatment of cancer, including checkpoint inhibitors, bispecific antibodies, chimeric antigen receptor T cells, and anti-cancer vaccines. We also discuss the various technologies and approaches used in detecting and measuring circulatory biomarkers and the ongoing need for harmonization.
Keywords: Biomarkers; Immunology; Immunotherapy; Oncology; Peripheral blood.
Conflict of interest statement
ABN has received consultant/advisory compensation from Kanghong Pharma, Promega, and Eli Lilly, and has received research funding from Seattle Genetics, MedPacto, Genentech, TRACON Pharma, Acceleron Pharma, Leadiant Biosciences, and Sanofi. KAS has been a consultant for Celgene, Moderna Therapeutics, Pierre-Fabre, AstraZeneca, EMD Serono, and Shattuck Labs, and has received research funding from Navigate BioPharma, Vasculox/Tioma Therapeutics, Tesaro, Takeda, Moderna Inc., Surface Oncology, Pierre-Fabre, Merck and Co., Bristol-Myers Squibb, AstraZeneca and Eli Lilly. CF is a current employee of Samumed, LLC, a former employee of Pfizer, and holds stock in Pfizer. SP is a former employee of Pfizer, and holds stock in Pfizer. I-MW and IJ are employees of Pfizer, and hold stock in Pfizer.
Figures

References
-
- Cristescu Razvan, Mogg Robin, Ayers Mark, Albright Andrew, Murphy Erin, Yearley Jennifer, Sher Xinwei, Liu Xiao Qiao, Lu Hongchao, Nebozhyn Michael, Zhang Chunsheng, Lunceford Jared K., Joe Andrew, Cheng Jonathan, Webber Andrea L., Ibrahim Nageatte, Plimack Elizabeth R., Ott Patrick A., Seiwert Tanguy Y., Ribas Antoni, McClanahan Terrill K., Tomassini Joanne E., Loboda Andrey, Kaufman David. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science. 2018;362(6411):eaar3593. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources