Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 5:387:121715.
doi: 10.1016/j.jhazmat.2019.121715. Epub 2019 Nov 19.

Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the "signal-on" analysis of mercury (II)

Affiliations

Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the "signal-on" analysis of mercury (II)

Lixiang Zhang et al. J Hazard Mater. .

Abstract

A visible-light-driven photoelectrochemical (PEC) sensor has been developed for the "signal-on" analysis of Hg2+ by the synergetic combination of low-bandgap Ag2S and wide-bandgap ZnS quantum dots (QDs). Ag2S QDs were synthesized with bead-chain-like structure by the self-assembly route and further covalently bound with ZnS QDs to be coated onto the indium tin oxide (ITO) electrodes. It was discovered that the ZnS@Ag2S-modified electrodes could display the visible-light-driven PEC behavior, of which Ag2S and ZnS QDs could act as the PEC sensitizer and Hg2+-recognition probe, respectively. More importantly, the photocurrent responses of the developed electrodes could be specifically turned on in the presence of Hg2+ under the visible-light irradiation, presumably due to that Hg2+ might conduct a Zn-to-Hg exchange on ZnS QDs to trigger the formation of HgS/ZnS@Ag2S heterojunction towards the enhanced electron-hole separation. The as-prepared PEC sensor could facilitate the detection of Hg2+ with concentrations ranging from 0.010-1000 nM, with a detection limit of about 1.0 pM. Besides, the feasibility of practical applications of the developed PEC analysis strategy was verified by probing Hg2+ in environmental water samples. Such a visible-light-driven PEC detection platform with the unique "turn-on" signal output may promise for the extensive applications for Hg2+ evaluation.

Keywords: Ag(2)S sensitizer; Photoelectrochemical sensor; Signal-on mercury (II) analysis; Visible light irradiation; ZnS recognition probe.

PubMed Disclaimer

Publication types

LinkOut - more resources