GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex
- PMID: 31780329
- PMCID: PMC6982374
- DOI: 10.1016/j.neuron.2019.10.008
GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex
Abstract
During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.
Keywords: GDPs; MGE; apoptosis; barrel cortex; calcium imaging; cell death; development; interneuron; spontaneous activity.
Copyright © 2019 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests
The authors declare no competing interests.
Figures








Similar articles
-
Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel Cortex.Neuron. 2020 Jan 8;105(1):93-105.e4. doi: 10.1016/j.neuron.2019.10.007. Epub 2019 Nov 25. Neuron. 2020. PMID: 31780328 Free PMC article.
-
Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage.J Neurosci. 2016 Mar 2;36(9):2646-62. doi: 10.1523/JNEUROSCI.4000-15.2016. J Neurosci. 2016. PMID: 26937006 Free PMC article.
-
Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity.Cell Rep. 2016 Aug 2;16(5):1391-1404. doi: 10.1016/j.celrep.2016.06.071. Epub 2016 Jul 14. Cell Rep. 2016. PMID: 27425623 Free PMC article.
-
Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.Trends Neurosci. 2012 Jan;35(1):57-67. doi: 10.1016/j.tins.2011.10.004. Epub 2011 Dec 6. Trends Neurosci. 2012. PMID: 22154068 Free PMC article. Review.
-
Interneurons. Fast-spiking, parvalbumin⁺ GABAergic interneurons: from cellular design to microcircuit function.Science. 2014 Aug 1;345(6196):1255263. doi: 10.1126/science.1255263. Epub 2014 Jul 31. Science. 2014. PMID: 25082707 Review.
Cited by
-
The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death.J Neurosci. 2020 Nov 4;40(45):8652-8668. doi: 10.1523/JNEUROSCI.1636-20.2020. Epub 2020 Oct 15. J Neurosci. 2020. PMID: 33060174 Free PMC article.
-
Development, Diversity, and Death of MGE-Derived Cortical Interneurons.Int J Mol Sci. 2021 Aug 27;22(17):9297. doi: 10.3390/ijms22179297. Int J Mol Sci. 2021. PMID: 34502208 Free PMC article. Review.
-
Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons.Sci Adv. 2024 May 10;10(19):eadj9911. doi: 10.1126/sciadv.adj9911. Epub 2024 May 10. Sci Adv. 2024. PMID: 38728406 Free PMC article.
-
Innovations present in the primate interneuron repertoire.Nature. 2020 Oct;586(7828):262-269. doi: 10.1038/s41586-020-2781-z. Epub 2020 Sep 30. Nature. 2020. PMID: 32999462 Free PMC article.
-
Assemblies of Perisomatic GABAergic Neurons in the Developing Barrel Cortex.Neuron. 2020 Jan 8;105(1):93-105.e4. doi: 10.1016/j.neuron.2019.10.007. Epub 2019 Nov 25. Neuron. 2020. PMID: 31780328 Free PMC article.
References
-
- Anderson SA, Eisenstat DD, Shi L, and Rubenstein JL. 1997. ‘Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes’, Science, 278: 474–6. - PubMed
-
- Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, and Macklis JD. 2005. ‘Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo’, Neuron, 45: 207–21. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials