Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;54(3):396-403.
doi: 10.1016/j.jmii.2019.07.009. Epub 2019 Nov 12.

Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice

Affiliations
Free article

Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice

Bo Liu et al. J Microbiol Immunol Infect. 2021 Jun.
Free article

Abstract

Background/purpose: Severe infection with influenza A (H1N1)pdm09 virus is characterized by acute lung injury. The limited efficacy of anti-viral drugs indicates an urgent need for additional therapies. We have previously reported that neutralization of gamma interferon (IFN-γ) could significantly rescue the thymic atrophy induced by severe influenza A (H1N1)pdm09 infection in BALB/c mice. A deeper investigation was conducted into the influence of neutralizing IFN-γ to the BALB/c mice weight, survival rate, and lung injury.

Methods: The BALB/c mice was infected with severe influenza A (H1N1)pdm09. Monoclonal antibodies against IFN-γ were injected into the abdominal cavities of the mice. After neutralization of IFN-γ occurred in mice infected by severe ∖ influenza A (H1N1)pdm09, observing the influence of neutralizing IFN-γ to the BALB/c mice weight, survival rate, lung injury.

Result: Our results here showed that anti-IFN-γ therapy alleviated the acute lung injury in this mouse model. Neutralization of IFN-γ led to a significant reduction in the lung microvascular leak and the cellular infiltrate in the lung tissue, and also improved the outcome in mice mortality. Several pro-inflammatory cytokines, including interleukin (IL)-1α, tumor necrosis factor (TNF)-α and granulocyte-colony stimulating factor (G-CSF) in the bronchoalveolar lavage fluid (BALF), and the chemokines including G-CSF, monocyte chemoattractant protein-1 (MCP-1) in serum samples were found to be significantly reduced after anti-IFN-γ treatment.

Conclusion: These results suggested that IFN-γ plays an important role in acute lung injury induced by severe influenza A (H1N1)pdm09 infection, and monoclonal antibodies against IFN-γ could be useful as a potential therapeutic remedy for future influenza pandemics.

Keywords: H1N1; IFN-γ; Lung injury.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest There is no conflict of interest.

MeSH terms

LinkOut - more resources