Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan;21(1):21-35.
doi: 10.1038/s41583-019-0240-3. Epub 2019 Nov 28.

Amyloid-β-independent regulators of tau pathology in Alzheimer disease

Affiliations
Review

Amyloid-β-independent regulators of tau pathology in Alzheimer disease

Rik van der Kant et al. Nat Rev Neurosci. 2020 Jan.

Abstract

The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aβ plaque deposition precedes cortical tau pathology. Because Aβ accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aβ from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aβ accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aβ-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aβ-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aβ and tau.

PubMed Disclaimer

References

    1. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383–388 (1991). - PubMed
    1. Selkoe, D. J. The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498 (1991). - PubMed - PMC
    1. Ringman, J. M. et al. Neuropathology of autosomal dominant Alzheimer disease in the National Alzheimer Coordinating Center Database. J. Neuropathol. Exp. Neurol. 75, 284–290 (2016). - PubMed - PMC
    1. Gordon, B. A. et al. Tau PET in autosomal dominant Alzheimer’s disease: relationship with cognition, dementia and other biomarkers. Brain 142, 1063–1076 (2019). - PubMed
    1. Quiroz, Y. T. et al. Association between amyloid and tau accumulation in young adults with autosomal dominant Alzheimer disease. JAMA Neurol. 75, 548–556 (2018). - PubMed - PMC

Publication types