Periodontal pathogens and clinical parameters in chronic periodontitis
- PMID: 31782910
- DOI: 10.1111/omi.12274
Periodontal pathogens and clinical parameters in chronic periodontitis
Abstract
The use of next generation sequencing and bioinformatics has revealed the complexity and richness of the human oral microbiota. While some species are well known for their periodontal pathogenicity, the molecular-based approaches for bacterial identification have raised awareness about new putative periodontal pathogens. Although they are found increased in case of periodontitis, there is currently a lack of data on their interrelationship with the periodontal measures. We processed the sequencing data of the subgingival microbiota of 75 patients with hemochromatosis and chronic periodontitis in order to characterize the well-described and newly identified subgingival periodontal pathogens. We used correlation tests and statistical models to assess the association between the periodontal pathogens and mean pocket depth, and to determine the most relevant bacterial biomarkers of periodontitis severity. Based on correlation test results, nine taxa were selected and included in the statistical models. The multiple linear regression models adjusted for systemic and periodontal clinical variables showed that mean pocket depth was negatively associated with Aggregatibacter and Rothia, and positively associated with Porphyromonas. Furthermore, a bacterial ratio that was previously described as a signature of dysbiosis in periodontitis (%Porphyromonas+%Treponema+%Tannerella)/(%Rothia+%Corynebacterium) was the most significant predictor. In this specific population, we found that the best model in predicting the mean pocket depth was microbial dysbiosis using the dysbiosis ratio taxa formula. While further studies are needed to assess the validity of these results on the general population, such a dysbiosis ratio could be used in the future to monitor the subgingival microbiota.
Keywords: chronic periodontitis; deep sequencing; dysbiosis; potential periodontal pathogens.
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Similar articles
-
Signature of Microbial Dysbiosis in Periodontitis.Appl Environ Microbiol. 2017 Jun 30;83(14):e00462-17. doi: 10.1128/AEM.00462-17. Print 2017 Jul 15. Appl Environ Microbiol. 2017. PMID: 28476771 Free PMC article.
-
Dysbiosis of the Subgingival Microbiome and Relation to Periodontal Disease in Association with Obesity and Overweight.Nutrients. 2023 Feb 6;15(4):826. doi: 10.3390/nu15040826. Nutrients. 2023. PMID: 36839184 Free PMC article.
-
Development of Oral Care Chip, a novel device for quantitative detection of the oral microbiota associated with periodontal disease.PLoS One. 2020 Feb 28;15(2):e0229485. doi: 10.1371/journal.pone.0229485. eCollection 2020. PLoS One. 2020. PMID: 32109938 Free PMC article.
-
Subgingival microbial profile and production of proinflammatory cytokines in chronic periodontitis.Folia Med (Plovdiv). 2014 Jul-Sep;56(3):152-60. doi: 10.2478/folmed-2014-0022. Folia Med (Plovdiv). 2014. PMID: 25434071 Review.
-
Porphyromonas Gingivalis in the Development of Periodontitis: Impact on Dysbiosis and Inflammation.Arch Razi Inst. 2022 Oct 31;77(5):1539-1551. doi: 10.22092/ARI.2021.356596.1875. eCollection 2022 Oct. Arch Razi Inst. 2022. PMID: 37123122 Free PMC article. Review.
Cited by
-
The impact of smoking different tobacco types on the subgingival microbiome and periodontal health: a pilot study.Sci Rep. 2021 Jan 13;11(1):1113. doi: 10.1038/s41598-020-80937-3. Sci Rep. 2021. PMID: 33441919 Free PMC article.
-
Integrative microbiome and metabolome profiles reveal the impacts of periodontitis via oral-gut axis in first-trimester pregnant women.J Transl Med. 2024 Sep 3;22(1):819. doi: 10.1186/s12967-024-05579-9. J Transl Med. 2024. PMID: 39227984 Free PMC article.
-
Prevalence of Periodontal Pathogens in Slovak Patients with Periodontitis and Their Possible Aspect of Transmission from Companion Animals to Humans.Biology (Basel). 2022 Oct 19;11(10):1529. doi: 10.3390/biology11101529. Biology (Basel). 2022. PMID: 36290432 Free PMC article.
-
Pooled analysis of oral microbiome profiles defines robust signatures associated with periodontitis.mSystems. 2024 Nov 19;9(11):e0093024. doi: 10.1128/msystems.00930-24. Epub 2024 Oct 24. mSystems. 2024. PMID: 39445812 Free PMC article.
-
Periodontitis History Shapes the Early Peri-Implant Microbiome Formation: A Metagenomic Analysis.J Clin Periodontol. 2025 Jul;52(7):1011-1023. doi: 10.1111/jcpe.14147. Epub 2025 Mar 5. J Clin Periodontol. 2025. PMID: 40043731 Free PMC article.
References
REFERENCES
-
- Abusleme, L., Dupuy, A. K., Dutzan, N., Silva, N., Burleson, J. A., Strausbaugh, L. D., … Diaz, P. I. (2013). The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME Journal, 7(5), 1016-1025. https://doi.org/10.1038/ismej.2012.174
-
- Barnett, M., Ciancio, S., & Mather, M. (1980). The modified papillary bleeding index-Comparison with gingival index during the resolution of gingivitis. Journal of Preventive Dentistry, 6(2), 135-138.
-
- Boyer, E., Le Gall-David, S., Martin, B., Fong, S. B., Loréal, O., Deugnier, Y., … Meuric, V. (2018). Increased transferrin saturation is associated with subgingival microbiota dysbiosis and severe periodontitis in genetic haemochromatosis. Scientific Reports, 8(1), 15532. https://doi.org/10.1038/s41598-018-33813-0
-
- Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303
-
- Chen, T., Yu, W.-H., Izard, J., Baranova, O. V., Lakshmanan, A., & Dewhirst, F. E. (2010). The human oral microbiome database: A web accessible resource for investigating oral microbe taxonomic and genomic information. Database, 2010, baq013. https://doi.org/10.1093/database/baq013
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources