Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec 1;33 Suppl 2(Suppl 2):S181-S188.
doi: 10.1097/QAD.0000000000002269.

Brain macrophages harbor latent, infectious simian immunodeficiency virus

Affiliations
Review

Brain macrophages harbor latent, infectious simian immunodeficiency virus

Celina Abreu et al. AIDS. .

Abstract

: The current review examines the role of brain macrophages, that is perivascular macrophages and microglia, as a potential viral reservoir in antiretroviral therapy (ART) treated, simian immunodeficiency virus (SIV)-infected macaques. The role, if any, of latent viral reservoirs of HIV and SIV in the central nervous system during ART suppression is an unresolved issue. HIV and SIV infect both CD4 lymphocytes and myeloid cells in blood and tissues during acute and chronic infection. HIV spread to the brain occurs during acute infection by the infiltration of activated CD4 lymphocytes and monocytes from blood and is established in both embryonically derived resident microglia and monocyte-derived perivascular macrophages. ART controls viral replication in peripheral blood and cerebrospinal fluid in HIV-infected individuals but does not directly eliminate infected cells in blood, tissues or brain. Latently infected resting CD4 lymphocytes in blood and lymphoid tissues are a well recognized viral reservoir that can rebound once ART is withdrawn. In contrast, central nervous system resident microglia and perivascular macrophages in brain have not been examined as potential reservoirs for HIV during suppressive ART. Macrophages in tissues are long-lived cells that are HIV and SIV infected in tissues such as gut, lung, spleen, lymph node and brain and contribute to ongoing inflammation in tissues. However, their potential role in viral persistence and latency or their potential to rebound in the absence ART has not been examined. It has been shown that measurement of HIV latency by HIV DNA PCR in CD4 lymphocytes overestimates the size of the latent reservoirs of HIV that contribute to rebound that is cells containing the genomes of replicative viruses. Thus, the quantitative viral outgrowth assay has been used as a reliable measure of the number of latent cells that harbor infectious viral DNA and, may constitute a functional latent reservoir. Using quantitative viral outgrowth assays specifically designed to quantitate latently infected CD4 lymphocytes and myeloid cells in an SIV macaque model, we demonstrated that macrophages in brain harbor SIV genomes that reactivate and produce infectious virus in this assay, demonstrating that these cells have the potential to be a reservoir.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Quantitation of infected and latently infected brain macrophages in SIV infected macaques with and without ART by MΦ-QVOA. Quantitation of infected brain macrophages from ART-treated macaques (32, 36). The horizontal black line represents the median IUPM values. The MΦ QVOA results from SIV-infected animals with and without ART have been reported (32, 36). Significance was determined by Mann-Whitney nonparametric t test; a P of <0.05 was considered significant. This figure was reprinted from Avalos et al.,mBio.01186-17, 2017 according to ASM open access policies.

References

    1. Pierson T, McArthur J, and Siliciano RF, Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol, 2000. 18: p. 665–708. - PubMed
    1. Spudich SS, et al., Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis, 2005. 5: p. 98. PMC1299327. - PMC - PubMed
    1. Shaw GM, et al., HTLV-III infection in brains of children and adults with AIDS encephalopathy. Science, 1985. 227(4683): p. 177–82. - PubMed
    1. Ho DD, et al., Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med, 1985. 313(24): p. 1493–7. - PubMed
    1. Chiodi F, et al., Isolation frequency of human immunodeficiency virus from cerebrospinal fluid and blood of patients with varying severity of HIV infection. AIDS Res Hum Retroviruses, 1988. 4(5): p. 351–8. - PubMed

Publication types

MeSH terms

Substances