Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 4;12(1):130.
doi: 10.1186/s13045-019-0824-4.

Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer

Affiliations

Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer

Hitendra Patel et al. J Hematol Oncol. .

Abstract

Background: Treatment outcomes for patients with advanced pancreatic ductal adenocarcinoma (PDAC) remain dismal. There are unmet needs for understanding the biologic basis of this malignancy using novel next-generation sequencing technologies. Herein, we investigated the clinical utility of circulating tumor DNA (ctDNA) (the liquid biopsy) in this malignancy.

Methods: ctDNA was analyzed in 112 patients with PDAC (54-73 genes) and tissue DNA in 66 patients (315 genes) (both clinical-grade next-generation sequencing). Number of alterations, %ctDNA, concordance between ctDNA and tissue DNA, and correlation of ctDNA results with survival were assessed.

Results: The most common genes altered in ctDNA were TP53 (46% of patients, N = 51) and KRAS (44%, N = 49). Median number of characterized ctDNA alterations per patient was 1 (range, 0-6), but patients with advanced PDAC had significantly higher numbers of ctDNA alterations than those with surgically resectable disease (median, 2 versus 0.5, P = 0.04). Overall, 75% (70/94) of advanced tumors had ≥ 1 ctDNA alteration. Concordance rate between ctDNA and tissue DNA alterations was 61% for TP53 and 52% for KRAS. Concordance for KRAS alterations between ctDNA and tissue DNA from metastatic sites was significantly higher than between ctDNA and primary tumor DNA (72% vs 39%, P = 0.01). Importantly, higher levels of total %ctDNA were an independent prognostic factor for worse survival (hazard ratio, 4.35; 95% confidence interval, 1.85-10.24 [multivariate, P = 0.001]). A patient with three ctDNA alterations affecting the MEK pathway (GNAS, KRAS, and NF1) attained a response to trametinib monotherapy ongoing at 6 months.

Conclusions: Our findings showed that ctDNA often harbored unique alterations some of which may be targetable and that significantly greater numbers of ctDNA alterations occur in advanced versus resectable disease. Furthermore, higher ctDNA levels were a poor prognostic factor for survival.

Keywords: Circulating tumor DNA; KRAS; Molecular oncology; Next-generation sequencing; Pancreatic cancer; Targeted therapy.

PubMed Disclaimer

Conflict of interest statement

RK has the following disclosure information: Leadership (CureMatch, Inc); Stock and Other Ownership Interests ( IDbyDNA, CureMatch, Inc., and Soluventis); Consulting or Advisory Role (Gaido, LOXO, X-Biotech, Actuate Therapeutics, Roche, NeoMed, and Soluventis); Speaker’s fee (Roche); Research Funding (Incyte, Genentech, Merck Serono, Pfizer, Sequenom, Foundation Medicine, Guardant Health, Grifols, Konica Minolta, and OmniSeq [All insts]). RBL has a leadership position at Guardant Health and RBL and VMR are employees and own stock at Guardant Health. The other authors have no competing interests to this work.

Figures

Fig. 1
Fig. 1
Frequency (% of patients) of characterized alterations in pancreatic ductal adenocarcinoma (ctDNA [N = 112] and tissue DNA [N = 66]). Only genes altered in ≥ 2 patients were shown in tissue DNA
Fig. 2
Fig. 2
Kaplan-Meier curve for overall survival from ctDNA analysis depending on total %ctDNA (characterized alterations only) dichotomized at the median among patients with advanced pancreatic ductal adenocarcinoma (N = 94)
Fig. 3
Fig. 3
A representative PDAC case who underwent a matched targeted therapy based on ctDNA analysis. An 83-year-old man treated with the MEK inhibitor trametinib as single-agent therapy [ID#111]; he had alterations in GNAS, KRAS, and NF1, all of which can activate the MEK pathway. The patient showed improvement in symptoms, CA19-9, and %ctDNA in the altered genes. CT scans with contrast could not be performed due to renal insufficiency. Treatment is ongoing at 26+ weeks

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019;69(1):7–34. - PubMed
    1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer research. 2014;74(11):2913–2921. doi: 10.1158/0008-5472.CAN-14-0155. - DOI - PubMed
    1. Ducreux M, Cuhna AS, Caramella C, Hollebecque A, Burtin P, Goere D, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology. 2015;26(Suppl 5):v56–v68. doi: 10.1093/annonc/mdv295. - DOI - PubMed
    1. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. The New England journal of medicine. 2014;371(11):1039–1049. doi: 10.1056/NEJMra1404198. - DOI - PubMed
    1. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. Jama. 2013;310(14):1473–1481. doi: 10.1001/jama.2013.279201. - DOI - PubMed

Publication types

MeSH terms