Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;96(5):330-334.
doi: 10.1136/sextrans-2019-054220. Epub 2019 Dec 4.

Can proteomics elucidate mechanisms of antimicrobial resistance in Neisseria gonorrhoeae that whole genome sequencing is unable to identify? An analysis of protein expression within the 2016 WHO N. gonorrhoeae reference strains

Affiliations

Can proteomics elucidate mechanisms of antimicrobial resistance in Neisseria gonorrhoeae that whole genome sequencing is unable to identify? An analysis of protein expression within the 2016 WHO N. gonorrhoeae reference strains

Jianhe Peng et al. Sex Transm Infect. 2020 Aug.

Abstract

Objectives: Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is of increasing concern. This study established a quantitative, scalable proteomics method to examine the WHO panel of N. gonorrhoeae isolates with completed closed genomic sequences and well-defined phenotypical and genotypical AMR patterns, to gain a greater understanding of AMR in N. gonorrhoeae.

Methods: 14 WHO reference strains were propagated, pooled stable isotope labelled lysates were used as an internal standard (IS). Protein lysates were mixed with IS, digested with trypsin and fractionated before analysis by nano-LC/MS/MS, in triplicate. The susceptible strain WHO F was used as reference to which the proteomic profiles of other strains were compared. Hierarchical clustering and permutation adjusted t-tests were performed to find proteins with significant fold changes.

Results: Standardised, reproducible protein expression profiles in N. gonorrhoeae reference strains were produced. Strains that have previously been shown to be highly similar using genomics, displayed different proteomic profiles. Several proteins from efflux pumps to stress responses, such as oxidative stress, toxin/antitoxin systems, were found to be altered in AMR strains. LtgE was upregulated in strains which displayed chromosomally mediated resistance to penicillin. MacB (the ATP hydrolysis part of macrolide efflux pump MacA-B), was ~twofold upregulated in WHO V (MIC of azithromycin >256 mg/L) and maybe associated with azithromycin resistance.

Conclusions: A robust method was developed to study protein expression in N. gonorrhoeae. The proteome profiles could differentiate genetically similar stains. This study identified complex mechanisms in N. gonorrhoeae which may be associated with AMR.

Keywords: antibiotic resistance; gonorrhoea; neisseria gonorrhoeae.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.

Similar articles

Cited by

  • Proteomic Signatures of Antimicrobial Resistance in Yersinia pestis and Francisella tularensis.
    Deatherage Kaiser BL, Birdsell DN, Hutchison JR, Thelaus J, Jenson SC, Andrianaivoarimanana V, Byström M, Myrtennäs K, McDonough RF, Nottingham RD, Sahl JW, Schweizer HP, Rajerison M, Forsman M, Wunschel DS, Wagner DM. Deatherage Kaiser BL, et al. Front Med (Lausanne). 2022 Feb 10;9:821071. doi: 10.3389/fmed.2022.821071. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35223919 Free PMC article.

MeSH terms

LinkOut - more resources