Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 15:388:121753.
doi: 10.1016/j.jhazmat.2019.121753. Epub 2019 Nov 25.

High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor

Affiliations

High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor

Ya-Nan Bai et al. J Hazard Mater. .

Abstract

Anaerobic biological techniques are widely used in the reductive decolorization of textile wastewater. However, the decolorization efficiency of textile wastewater by conventional anaerobic biological techniques is generally limited due to the low biomass retention capacity and short hydraulic retention time (HRT). In this study, a methane-based hollow fiber membrane bioreactor (HfMBR) was initially inoculated with an enriched anaerobic methane oxidation (AOM) culture to rapidly form an anaerobic biofilm. Then, synthetic azo dye wastewater containing methyl orange (MO) was fed into the HfMBR. MO decolorization efficiency of ∼ 100 % (HRT = 2 to 1.5 days) and maximum decolorization rate of 883 mg/L/day (HRT = 0.5 day) were obtained by the stepwise increase of the MO loading rate into the methane-based HfMBR. Scanning electron microscopy (SEM) and fluorescence in situ hybridization (FISH) analysis visually revealed that archaea clusters formed synergistic consortia with adjacent bacteria. Quantitative PCR (qPCR), phylogenetic and high-throughput sequencing analysis results further confirmed the biological consortia formation of methane-related archaea and partner bacteria, which played a synergistic role in MO decolorization. The high removal efficiency and stable microbial structure in HfMBR suggest it is a potentially effective technique for high-toxic azo dyes removal from textile wastewater.

Keywords: Anaerobic methane oxidation; Archaea and bacteria; Decolorization; Hollow fiber membrane bioreactor; Methyl orange.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

LinkOut - more resources