Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes
- PMID: 31820500
- DOI: 10.1002/chem.201905315
Structural Insight into Binary Protein Metal-Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes
Abstract
Metal-organic frameworks (MOFs) hold great promise for numerous applications. However, proteins, carriers of biological functions in living systems, have not yet been fully explored as building blocks for the construction of MOFs. This work presents a strategy for the fabrication of binary MOFs. Considering octahedral ferritin symmetry, four His2 (His-His) motifs were first incorporated into the exterior surface of a ferritin nanocage near each C4 channel, yielding protein linkers with multiple metal-binding sites (bisH-SF). Secondly, by adding nickel ions to bisH-SF solutions triggers the self-assembly of ferritin nanocages into a porous 3D crystalline MOF with designed protein lattice, where two adjacent ferritin molecules along the C4 symmetry axes are bridged by four dinuclear or tetranuclear nickel clusters depending on Ni2+ concentration. This work provides a simple approach for precise control over a binary protein-metal crystalline framework, and the resulting MOFs exhibited inherent ferroxidase activity and peroxidase-like catalytic activity.
Keywords: metal-organic frameworks; metalloproteins; microporous materials; nickel; protein engineering.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Synthetic Modularity of Protein-Metal-Organic Frameworks.J Am Chem Soc. 2017 Jun 21;139(24):8160-8166. doi: 10.1021/jacs.7b01202. Epub 2017 Jun 7. J Am Chem Soc. 2017. PMID: 28590729
-
Tunable and Cooperative Thermomechanical Properties of Protein-Metal-Organic Frameworks.J Am Chem Soc. 2020 Oct 14;142(41):17265-17270. doi: 10.1021/jacs.0c07835. Epub 2020 Oct 5. J Am Chem Soc. 2020. PMID: 32972136
-
Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction.Anal Chim Acta. 2019 Feb 21;1049:74-81. doi: 10.1016/j.aca.2018.10.022. Epub 2018 Oct 16. Anal Chim Acta. 2019. PMID: 30612659
-
Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media.Adv Colloid Interface Sci. 2020 Mar;277:102108. doi: 10.1016/j.cis.2020.102108. Epub 2020 Jan 23. Adv Colloid Interface Sci. 2020. PMID: 32028075 Review.
-
Synthesis and Applications of Porous Organosulfonate-Based Metal-Organic Frameworks.Top Curr Chem (Cham). 2019 Oct 26;377(6):32. doi: 10.1007/s41061-019-0259-y. Top Curr Chem (Cham). 2019. PMID: 31654264 Review.
Cited by
-
Development of biological metal-organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment.Nanoscale Adv. 2020 Jul 31;2(9):3788-3797. doi: 10.1039/d0na00557f. eCollection 2020 Sep 16. Nanoscale Adv. 2020. PMID: 36132764 Free PMC article. Review.
-
Molecular Engineering of E. coli Bacterioferritin: A Versatile Nanodimensional Protein Cage.Molecules. 2023 Jun 9;28(12):4663. doi: 10.3390/molecules28124663. Molecules. 2023. PMID: 37375226 Free PMC article.
-
Facile Fabrication of Protein-Macrocycle Frameworks.J Am Chem Soc. 2021 Feb 3;143(4):1896-1907. doi: 10.1021/jacs.0c10697. Epub 2021 Jan 20. J Am Chem Soc. 2021. PMID: 33470808 Free PMC article.
-
Protein cages as building blocks for superstructures.Eng Biol. 2021 Jun 16;5(2):35-42. doi: 10.1049/enb2.12010. eCollection 2021 Jun. Eng Biol. 2021. PMID: 36969478 Free PMC article.
-
Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials.Nat Commun. 2021 Aug 11;12(1):4849. doi: 10.1038/s41467-021-25199-x. Nat Commun. 2021. PMID: 34381032 Free PMC article.
References
-
- S. Chui, S. Lo, J. Charmant, A. Orpen, I. Williams, Science 1999, 283, 1148-1150.
-
- H. Furukawa, K. Cordova, M. O'Keeffe, O. Yaghi, Science 2013, 341, 1230444.
-
- Y. Han, J. Li, Y. Xie, G. Guo, Chem. Soc. Rev. 2014, 43, 5952-5981.
-
- P. Horcajada, R. Gref, T. Baati, P. Allan, G. Maurin, P. Couvreur, G. Ferey, R. Morris, C. Serre, Chem. Rev. 2012, 112, 1232-1268.
-
- S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695-704.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous