Full-Scale Osteochondral Regeneration by Sole Graft of Tissue-Engineered Hyaline Cartilage without Co-Engraftment of Subchondral Bone Substitute
- PMID: 31820592
- DOI: 10.1002/adhm.201901304
Full-Scale Osteochondral Regeneration by Sole Graft of Tissue-Engineered Hyaline Cartilage without Co-Engraftment of Subchondral Bone Substitute
Erratum in
-
Full-Scale Osteochondral Regeneration by Sole Graft of Tissue-Engineered Hyaline Cartilage without Co-Engraftment of Subchondral Bone Substitute.Adv Healthc Mater. 2023 Jun;12(15):e2301333. doi: 10.1002/adhm.202301333. Adv Healthc Mater. 2023. PMID: 37312641 No abstract available.
Abstract
In this study, full-scale osteochondral defects are hypothesized, which penetrate the articular cartilage layer and invade into subchondral bones, and can be fixed by sole graft of tissue-engineered hyaline cartilage without co-engraftment of any subchondral bone substitute. It is hypothesized that given a finely regenerated articular cartilage shielding on top, the restoration of subchondral bones can be fulfilled via spontaneous self-remodeling in situ. Hence, the key challenge of osteochondral regeneration lies in restoration of the non-self-regenerative articular cartilage. Here, traumatic osteochondral lesions to be repaired in rabbit knee models are endeavored using novel tissue-engineered hyaline-like cartilage grafts that are produced by 3D cultured porcine chondrocytes in vitro. Comparative trials are conducted in animal models that are implanted with living hyaline cartilage grafts (LhCG) and decellularized LhCG (dLhCG). Sound osteochondral regeneration is gradually revealed from both LhCG and dLhCG-implanted samples 50-100 d after implantation. Quality regeneration in both zones of articular cartilage and subchondral bones are validated by the restored osteochondral composition, structure, phenotype, and mechanical property, which validate the hypothesis of this study.
Keywords: biomaterials; cartilage; decellularization; osteochondral regeneration; tissue engineering.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.J Vis Exp. 2013 May 21;(75):e4423. doi: 10.3791/4423. J Vis Exp. 2013. PMID: 23728213 Free PMC article.
-
Repair of porcine articular cartilage defect with a biphasic osteochondral composite.J Orthop Res. 2007 Oct;25(10):1277-90. doi: 10.1002/jor.20442. J Orthop Res. 2007. PMID: 17576624
-
[Demineralized cancellous bone seeded with allogeneic chondrocytes for repairing articular osteochondral defects in rabbits].Nan Fang Yi Ke Da Xue Xue Bao. 2018 Aug 30;38(9):1039-1044. doi: 10.12122/j.issn.1673-4254.2018.09.03. Nan Fang Yi Ke Da Xue Xue Bao. 2018. PMID: 30377114 Free PMC article. Chinese.
-
The osteochondral dilemma: review of current management and future trends.ANZ J Surg. 2014 Apr;84(4):211-7. doi: 10.1111/ans.12108. Epub 2013 Mar 4. ANZ J Surg. 2014. PMID: 23458285 Review.
-
The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds.Tissue Eng Part B Rev. 2009 Mar;15(1):55-73. doi: 10.1089/ten.teb.2008.0388. Tissue Eng Part B Rev. 2009. PMID: 19207035 Review.
Cited by
-
Osteochondral tissue engineering‑based subchondral bone plate repair (Review).Mol Med Rep. 2025 Jun;31(6):152. doi: 10.3892/mmr.2025.13517. Epub 2025 Apr 11. Mol Med Rep. 2025. PMID: 40211705 Free PMC article. Review.
-
Type II collagen scaffolds repair critical-sized osteochondral defects under induced conditions of osteoarthritis in rat knee joints via inhibiting TGF-β-Smad1/5/8 signaling pathway.Bioact Mater. 2024 Feb 16;35:416-428. doi: 10.1016/j.bioactmat.2024.02.008. eCollection 2024 May. Bioact Mater. 2024. PMID: 38384986 Free PMC article.
-
Osteochondral tissue engineering in translational practice: histological assessments and scoring systems.Front Bioeng Biotechnol. 2024 Aug 2;12:1434323. doi: 10.3389/fbioe.2024.1434323. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39157444 Free PMC article. Review.
-
Enhanced hyaline cartilage formation and continuous osteochondral regeneration via 3D-Printed heterogeneous hydrogel with multi-crosslinking inks.Mater Today Bio. 2024 May 3;26:101080. doi: 10.1016/j.mtbio.2024.101080. eCollection 2024 Jun. Mater Today Bio. 2024. PMID: 38757056 Free PMC article.
-
A chitosan/acellular matrix-based neural graft carrying mesenchymal stem cells to promote peripheral nerve repair.Stem Cell Res Ther. 2024 Dec 31;15(1):503. doi: 10.1186/s13287-024-04093-5. Stem Cell Res Ther. 2024. PMID: 39736729 Free PMC article.
References
-
- D. J. Huey, J. C. Hu, K. A. Athanasiou, Science 2012, 338, 917.
-
- R. Cancedda, B. Dozin, P. Giannoni, R. Quarto, Matrix Biol. 2003, 22, 81.
-
- G. Orlando, J. P. Lerut, S. Soker, R. J. Stratta, in Regenerative Medicine Applications in Organ Transplantation, Academic Press, Elsevier, London, UK; Waltham, MA; and San Diego, CA 2014.
-
- Y. M. Bastiaansen-Jenniskens, W. Koevoet, A. C. W. de Bart, J. C. van der Linden, A. M. Zuurmond, H. Weinans, J. A. N. Verhaar, G. J. V. M. van Osch, J. Degroot, Osteoarthritis Cartilage 2008, 16, 359.
-
- J. Espregueira-Mendes, H. Pereira, N. Sevivas, P. Varanda, M. V. da Silva, A. Monteiro, J. M. Oliveira, R. L. Reis, Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1136.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources