Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar:208:116451.
doi: 10.1016/j.neuroimage.2019.116451. Epub 2019 Dec 9.

Parietal tACS at beta frequency improves vision in a crowding regime

Affiliations
Free article

Parietal tACS at beta frequency improves vision in a crowding regime

Luca Battaglini et al. Neuroimage. 2020 Mar.
Free article

Abstract

Visual crowding is the inability to discriminate objects when presented with nearby flankers and sets a fundamental limit for conscious perception. Beta oscillations in the parietal cortex were found to be associated to crowding, with higher beta amplitude related to better crowding resilience. An open question is whether beta activity directly and selectively modulates crowding. We employed Transcranial Alternating Current Stimulation (tACS) in the beta band (18-Hz), in the alpha band (10-Hz) or in a sham regime, asking whether 18-Hz tACS would selectively improve the perception of crowded stimuli by increasing parietal beta activity. Resting-state electroencephalography (EEG) was measured before and after stimulation to test the influence of tACS on endogenous oscillations. Consistently with our predictions, we found that 18-Hz tACS, as compared to 10-Hz tACS and sham stimulation, reduced crowding. This improvement was found specifically in the contralateral visual hemifield and was accompanied by an increased amplitude of EEG beta oscillations, confirming an effect on endogenous brain rhythms. These results support a causal relationship between parietal beta oscillations and visual crowding and provide new insights into the precise oscillatory mechanisms involved in human vision.

Keywords: Neurostimulation; Perception; Vision; tACS; tES.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no competing interests.

Publication types

LinkOut - more resources