Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Nov 19:8:31.
doi: 10.1186/s40164-019-0155-8. eCollection 2019.

Gut microbiome and CAR-T therapy

Affiliations
Review

Gut microbiome and CAR-T therapy

Muhammad Bilal Abid et al. Exp Hematol Oncol. .

Abstract

Considerable progress has been made in cancer therapeutics recently with targeted strategies that are efficacious and less toxic. Immunotherapy and chimeric antigen receptor (CAR) T-cells are increasingly being evaluated in a variety of tumors in the relapsed/refractory as well as frontline disease settings, predominantly in hematologic malignancies (HM). Despite impressive outcomes in select patients, there remains significant heterogeneity in clinical response to CAR T-cells. The gut microbiome has emerged as one of the key host factors that could potentially be modulated to enhance responses to immunotherapy. Several recent human studies receiving immunotherapy showed a significantly superior response and survival in patients with the more diverse gut microbiome. Currently, it is unknown if gut microbiota modulates anti-tumor responses to CAR T-cells. Based on molecular and immunological understanding, we hypothesize that strategically manipulating gut microbiota may enhance responses to CAR T-cells. In this review, we further discuss resistance mechanisms to CAR T-cells in HM, potential approaches to overcome resistance by harnessing gut microbiota and other related novel strategies.

Keywords: CAR T-cells; CRISPR/cas9; Dysbiosis; Gut microbiome; Immuno-oncology; Immunotherapy; TRUCKs.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Gut microbiota mediates the differentiation of naïve T-cells either into pro-inflammatory Th17 or anti-inflammatory, Tregs. These effector T-cells then migrate to systemic circulation from mLN. Th17 boosts effector T-cells, mainly mediated via IL-17, whereas Tregs suppress effector T-cell function, mediated via IL-10. Specific gut taxa may potentially be harnessed to enhance CAR T-cell responses in several ways (figure’s left to right): By influencing pre-CAR conditioning; by using specific, narrow-spectrum antibiotics to deplete select, detrimental gut microbes; suppression of Foxp3+ Tregs and hence circumventing Treg-induced CAR T-cell suppression; upregulation of IL-6/STAT3 signature; direct activation of CAR T-cells (similar mechanism as that of endogenous T-cells)
Fig. 2
Fig. 2
Butyrate produced by Akkermansia muciniphila would preferentially mount a pro-inflammatory immune response and suppress Tregs in the TME. This IL-12-mediated immune effector T-cell activation will boost ICI efficacy and secondarily enhance responses to CAR T-cells

References

    1. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–584. doi: 10.1038/nrd4591. - DOI - PubMed
    1. Kuehn BM. The promise and challenges of CAR-T gene therapy. JAMA. 2017;318(22):2167–2169. doi: 10.1001/jama.2017.15605. - DOI - PubMed
    1. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. doi: 10.1056/NEJMoa1003466. - DOI - PMC - PubMed
    1. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454. doi: 10.1056/NEJMoa1200690. - DOI - PMC - PubMed
    1. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–319. doi: 10.1056/NEJMoa1411087. - DOI - PMC - PubMed

LinkOut - more resources