Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 1:388:114850.
doi: 10.1016/j.taap.2019.114850. Epub 2019 Dec 9.

Low doses of BPA induced abnormal mitochondrial fission and hypertrophy in human embryonic stem cell-derived cardiomyocytes via the calcineurin-DRP1 signaling pathway: A comparison between XX and XY cardiomyocytes

Affiliations

Low doses of BPA induced abnormal mitochondrial fission and hypertrophy in human embryonic stem cell-derived cardiomyocytes via the calcineurin-DRP1 signaling pathway: A comparison between XX and XY cardiomyocytes

Wei Cheng et al. Toxicol Appl Pharmacol. .

Abstract

Humans are inevitably exposed to bisphenol A (BPA) via multiple exposure ways. Thus, attention should be raised to the possible adverse effects related to low doses of BPA. Epidemiological studies have outlined BPA exposure and the increased risk of cardiovascular diseases (such as cardiac hypertrophy), which has been confirmed to be sex-specific in rodent animals and present in few in vitro studies, although the molecular mechanism is still unclear. However, whether BPA at low doses equivalent to human internal exposure level could induce cardiac hypertrophy via the calcineurin-DRP1 signaling pathway by disrupting calcium homeostasis is unknown. To address this, human embryonic stem cell (H1, XY karyotype and H9, XX karyotype)-derived cardiomyocytes (CM) were purified and applied to study the low-dose effects of BPA on cardiomyocyte hypertrophy. In our study, when H1- and H9-CM were exposed to noncytotoxic BPA (8 ng/ml), markedly elevated hypertrophic-related mRNA expression levels (such as NPPA and NPPB), enhanced cellular area and reduced ATP supplementation, demonstrated the hypertrophic cardiomyocyte phenotype in vitro. The excessive fission produced by BPA was promoted by CnAβ-mediated dephosphorylation of DRP1. At the molecular level, the increase in cytosolic Ca2+ levels by low doses of BPA could discriminate between H1- and H9-CM, which may suggest a potential sex-specific hypertrophic risk in cardiomyocytes in terms of abnormal mitochondrial fission and ATP production by impairing CnAβ-DRP1 signaling. In CnAβ-knockdown cardiomyocytes, these changes were highly presented in XX-karyotyped cells, rather than in XY-karyotyped cells.

Keywords: Bisphenol A; Calcineurin; Cardiomyocytes; Human embryonic stem cells; Mitochondrial fission; Sex-specific effect.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest.

Publication types

MeSH terms

LinkOut - more resources