Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 21;92(2):2266-2273.
doi: 10.1021/acs.analchem.9b04972. Epub 2019 Dec 31.

Enzyme Kinetics via Open Circuit Potentiometry

Affiliations

Enzyme Kinetics via Open Circuit Potentiometry

Lettie A Smith et al. Anal Chem. .

Abstract

We demonstrate the application of open circuit potentiometry (OCP) to measure enzyme turnover kinetics, kturn. The electrode surface will become poised by the addition of a well-behaved redox pair, such as ferrocenemethanol/ferrocenium methanol (FcMeOH/FcMeOH+), which acts as the cosubstrate for the enzymatic process. A measurable change in potential results when an enzyme consumes the one-electron transfer mediator. Glucose oxidase was studied as a test-case, but the method is generalizable across oxidoreductase enzymes that rely on electron transfer mediators. In the presence of glucose and FcMeOH+, glucose oxidase delivers electrons to FcMeOH+, and the potential changes with respect to the Nernst equation. A theoretical model incorporating enzymatic rate expressions into the Nernst equation was derived to explain the observed potential transients, and experimental data fit theory well. A similar experiment was performed using amperometry on ultramicroelectrodes (UMEs). Here, the same enzymatic rate expression may be incorporated into the equation for steady-state flux to an UME to obtain kturn. While similar kinetic information was obtained from the potentiometric and amperometric responses, potentiometry is independent of electrode size and mass transfer effects. Finally, we show how kturn changes as a function of one-electron mediator. Our results may eventually find applications to biosensors, where electrode fouling plagues long-term sensor performance.

PubMed Disclaimer

Publication types

LinkOut - more resources