Selective mGluR1 Negative Allosteric Modulator Reduces Blood-Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage
- PMID: 31833035
- DOI: 10.1007/s12975-019-00758-z
Selective mGluR1 Negative Allosteric Modulator Reduces Blood-Brain Barrier Permeability and Cerebral Edema After Experimental Subarachnoid Hemorrhage
Abstract
The blood-brain barrier (BBB) disruption leads to the vasogenic brain edema and contributes to the early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the mechanisms underlying the BBB damage following SAH are poorly understood. Here we reported that the neurotransmitter glutamate of cerebrospinal fluid (CSF) was dramatically increased in SAH patients with symptoms of cerebral edema. Using the rat SAH model, we found that SAH caused the increase of CSF glutamate level and BBB permeability in EBI, intracerebroventricular injection of exogenous glutamate deteriorated BBB damage and cerebral edema, while intraperitoneally injection of metabotropic glutamate receptor 1(mGluR1) negative allosteric modulator JNJ16259685 significantly attenuated SAH-induced BBB damage and cerebral edema. In an in vitro BBB model, we showed that glutamate increased monolayer permeability of human brain microvascular endothelial cells (HBMEC), whereas JNJ16259685 preserved glutamate-damaged BBB integrity in HBMEC. Mechanically, glutamate downregulated the level and phosphorylation of vasodilator-stimulated phosphoprotein (VASP), decreased the tight junction protein occludin, and increased AQP4 expression at 72 h after SAH. However, JNJ16259685 significantly increased VASP, p-VASP, and occludin, and reduced AQP level at 72 h after SAH. Altogether, our results suggest an important role of glutamate in disruption of BBB function and inhibition of mGluR1 with JNJ16259685 reduced BBB damage and cerebral edema after SAH.
Keywords: Blood–brain barrier; Glutamate; JNJ16259685; Subarachnoid hemorrhage; mGluR1.
Similar articles
-
Negative Allosteric Modulator of mGluR1 Improves Long-Term Neurologic Deficits after Experimental Subarachnoid Hemorrhage.ACS Chem Neurosci. 2020 Sep 16;11(18):2869-2880. doi: 10.1021/acschemneuro.0c00485. Epub 2020 Aug 25. ACS Chem Neurosci. 2020. PMID: 32786302
-
Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats.J Neuroinflammation. 2018 Jun 9;15(1):178. doi: 10.1186/s12974-018-1211-8. J Neuroinflammation. 2018. PMID: 29885663 Free PMC article.
-
Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood-brain barrier disruption and brain edema after experimental subarachnoid hemorrhage.J Mol Neurosci. 2012 Sep;48(1):273-80. doi: 10.1007/s12031-012-9769-6. Epub 2012 Apr 22. J Mol Neurosci. 2012. PMID: 22528459
-
Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage.Curr Neuropharmacol. 2020;18(12):1168-1179. doi: 10.2174/1570159X18666200106154203. Curr Neuropharmacol. 2020. PMID: 31903882 Free PMC article. Review.
-
Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies.J Neurosci Res. 2020 Jan;98(1):42-56. doi: 10.1002/jnr.24330. Epub 2018 Sep 22. J Neurosci Res. 2020. PMID: 30242870 Review.
Cited by
-
ER Stress is Involved in Mast Cells Degranulation via IRE1α/miR-125/Lyn Pathway in an Experimental Intracerebral Hemorrhage Mouse Model.Neurochem Res. 2022 Jun;47(6):1598-1609. doi: 10.1007/s11064-022-03555-7. Epub 2022 Feb 16. Neurochem Res. 2022. PMID: 35171433
-
Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke.Front Cell Neurosci. 2020 Apr 3;14:68. doi: 10.3389/fncel.2020.00068. eCollection 2020. Front Cell Neurosci. 2020. PMID: 32317935 Free PMC article.
-
IRE1α inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model.J Neuroinflammation. 2020 May 6;17(1):152. doi: 10.1186/s12974-020-01796-3. J Neuroinflammation. 2020. PMID: 32375838 Free PMC article.
-
Aquaporins in Acute Brain Injury: Insights from Clinical and Experimental Studies.Biomedicines. 2025 Jun 7;13(6):1406. doi: 10.3390/biomedicines13061406. Biomedicines. 2025. PMID: 40564125 Free PMC article. Review.
-
Early High Cerebrospinal Fluid Glutamate: A Potential Predictor for Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage.ACS Omega. 2020 Jun 16;5(25):15385-15389. doi: 10.1021/acsomega.0c01472. eCollection 2020 Jun 30. ACS Omega. 2020. PMID: 32637812 Free PMC article.
References
-
- Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37. https://doi.org/10.1016/j.pneurobio.2012.02.003 . - DOI - PubMed - PMC
-
- Duris K, Lipkova J, Splichal Z, Madaraszova T, Jurajda M. Early inflammatory response in the brain and anesthesia recovery time evaluation after experimental subarachnoid hemorrhage. Transl Stroke Res. 2018;10:308–18. https://doi.org/10.1007/s12975-018-0641-z . - DOI
-
- Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91. https://doi.org/10.1016/j.pneurobio.2013.09.002 . - DOI - PubMed
-
- Li Z, Liang G, Ma T, Li J, Wang P, Liu L, et al. Blood-brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis. 2015;30(2):597–603. https://doi.org/10.1007/s11011-014-9609-1 . - DOI - PubMed
-
- Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res. 2019;14(7):1138–43. https://doi.org/10.4103/1673-5374.251190 . - DOI - PubMed - PMC
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources