Predicting the occurrence of surgical site infections using text mining and machine learning
- PMID: 31834905
- PMCID: PMC6910696
- DOI: 10.1371/journal.pone.0226272
Predicting the occurrence of surgical site infections using text mining and machine learning
Abstract
In this study we propose the use of text mining and machine learning methods to predict and detect Surgical Site Infections (SSIs) using textual descriptions of surgeries and post-operative patients' records, mined from the database of a high complexity University hospital. SSIs are among the most common adverse events experienced by hospitalized patients; preventing such events is fundamental to ensure patients' safety. Knowledge on SSI occurrence rates may also be useful in preventing future episodes. We analyzed 15,479 surgery descriptions and post-operative records testing different preprocessing strategies and the following machine learning algorithms: Linear SVC, Logistic Regression, Multinomial Naive Bayes, Nearest Centroid, Random Forest, Stochastic Gradient Descent, and Support Vector Classification (SVC). For prediction purposes, the best result was obtained using the Stochastic Gradient Descent method (79.7% ROC-AUC); for detection, Logistic Regression yielded the best performance (80.6% ROC-AUC).
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures







Similar articles
-
Machine learning applications for the prediction of surgical site infection in neurological operations.Neurosurg Focus. 2019 Aug 1;47(2):E7. doi: 10.3171/2019.5.FOCUS19241. Neurosurg Focus. 2019. PMID: 31370028
-
Construction accident narrative classification: An evaluation of text mining techniques.Accid Anal Prev. 2017 Nov;108:122-130. doi: 10.1016/j.aap.2017.08.026. Epub 2017 Sep 1. Accid Anal Prev. 2017. PMID: 28865927
-
Text mining approach to predict hospital admissions using early medical records from the emergency department.Int J Med Inform. 2017 Apr;100:1-8. doi: 10.1016/j.ijmedinf.2017.01.001. Epub 2017 Jan 5. Int J Med Inform. 2017. PMID: 28241931
-
The best machine learning algorithm for building surgical site infection predictive models: A systematic review and network meta-analysis.Comput Biol Med. 2025 Jun;192(Pt A):110286. doi: 10.1016/j.compbiomed.2025.110286. Epub 2025 Apr 30. Comput Biol Med. 2025. PMID: 40311461
-
Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies.Clin Microbiol Infect. 2020 Oct;26(10):1291-1299. doi: 10.1016/j.cmi.2020.02.003. Epub 2020 Feb 13. Clin Microbiol Infect. 2020. PMID: 32061798 Review.
Cited by
-
Artificial intelligence in perioperative management of major gastrointestinal surgeries.World J Gastroenterol. 2021 Jun 7;27(21):2758-2770. doi: 10.3748/wjg.v27.i21.2758. World J Gastroenterol. 2021. PMID: 34135552 Free PMC article. Review.
-
Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis.Ann Med Surg (Lond). 2022 Nov 23;84:104956. doi: 10.1016/j.amsu.2022.104956. eCollection 2022 Dec. Ann Med Surg (Lond). 2022. PMID: 36582918 Free PMC article. Review.
-
Advancements of Artificial Intelligence in Liver-Associated Diseases and Surgery.Medicina (Kaunas). 2022 Mar 22;58(4):459. doi: 10.3390/medicina58040459. Medicina (Kaunas). 2022. PMID: 35454298 Free PMC article.
-
Improving Surgical Site Infection Prediction Using Machine Learning: Addressing Challenges of Highly Imbalanced Data.Diagnostics (Basel). 2025 Feb 19;15(4):501. doi: 10.3390/diagnostics15040501. Diagnostics (Basel). 2025. PMID: 40002652 Free PMC article.
-
Using machine learning for the personalised prediction of revision endoscopic sinus surgery.PLoS One. 2022 Apr 29;17(4):e0267146. doi: 10.1371/journal.pone.0267146. eCollection 2022. PLoS One. 2022. PMID: 35486626 Free PMC article.
References
-
- Anvisa/Brasil. Infection Diagnostic Criteria Related to Healthcare. In: Agência Nacional de Vigilância Sanitária [Internet]. 2017. p. 13–88. Available from: www.anvisa.gov.br
-
- Wachter RM. Understanding Patient Safety. In: AMGH Editora. 2013. 479 p.
-
- Bouzbid S, Gicquel Q, Gerbier S, Chomarat M, Pradat E, Fabry J, et al. Automated detection of nosocomial infections: Evaluation of different strategies in an intensive care unit 2000–2006. J Hosp Infect [Internet]. 2011;79(1):38–43. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&A... 10.1016/j.jhin.2011.05.006 - DOI - PubMed
-
- Michelson JD, Pariseau JS, Paganelli WC. Assessing surgical site infection risk factors using electronic medical records and text mining. Am J Infect Control [Internet]. 2014;42(3):333–336. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84896735530&partnerID... 10.1016/j.ajic.2013.09.007 - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources