Quantum expander for gravitational-wave observatories
- PMID: 31839938
- PMCID: PMC6904558
- DOI: 10.1038/s41377-019-0230-2
Quantum expander for gravitational-wave observatories
Abstract
The quantum uncertainty of laser light limits the sensitivity of gravitational-wave observatories. Over the past 30 years, techniques for squeezing the quantum uncertainty, as well as for enhancing gravitational-wave signals with optical resonators have been invented. Resonators, however, have finite linewidths, and the high signal frequencies that are produced during the highly scientifically interesting ring-down of astrophysical compact-binary mergers still cannot be resolved. Here, we propose a purely optical approach for expanding the detection bandwidth. It uses quantum uncertainty squeezing inside one of the optical resonators, compensating for the finite resonators' linewidths while keeping the low-frequency sensitivity unchanged. This quantum expander is intended to enhance the sensitivity of future gravitational-wave detectors, and we suggest the use of this new tool in other cavity-enhanced metrological experiments.
Keywords: Nonlinear optics; Optical metrology; Quantum optics.
© The Author(s) 2019.
Conflict of interest statement
Conflict of interestThe authors declare that they have no conflict of interest.
Figures




Similar articles
-
Expanding the Quantum-Limited Gravitational-Wave Detection Horizon.Phys Rev Lett. 2025 Feb 7;134(5):051401. doi: 10.1103/PhysRevLett.134.051401. Phys Rev Lett. 2025. PMID: 39983160
-
Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors.Phys Rev Lett. 2020 May 1;124(17):171101. doi: 10.1103/PhysRevLett.124.171101. Phys Rev Lett. 2020. PMID: 32412296
-
First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory.Phys Rev Lett. 2021 Jan 29;126(4):041102. doi: 10.1103/PhysRevLett.126.041102. Phys Rev Lett. 2021. PMID: 33576646
-
Gravitational wave detection using laser interferometry beyond the standard quantum limit.Philos Trans A Math Phys Eng Sci. 2018 May 28;376(2120):20170289. doi: 10.1098/rsta.2017.0289. Philos Trans A Math Phys Eng Sci. 2018. PMID: 29661977 Review.
-
Interferometer techniques for gravitational-wave detection.Living Rev Relativ. 2016;19(1):3. doi: 10.1007/s41114-016-0002-8. Epub 2017 Feb 17. Living Rev Relativ. 2016. PMID: 28260967 Free PMC article. Review.
Cited by
-
Generation of squeezed vacuum state in the millihertz frequency band.Light Sci Appl. 2024 Oct 17;13(1):294. doi: 10.1038/s41377-024-01606-y. Light Sci Appl. 2024. PMID: 39419986 Free PMC article.
References
-
- Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett.119, 161101 (2017). - PubMed
-
- Abbott BP, et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 2017;848:L12. doi: 10.3847/2041-8213/aa91c9. - DOI
-
- Abbott BP, et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017;848:L13. doi: 10.3847/2041-8213/aa920c. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous