Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 26;141(51):20443-20450.
doi: 10.1021/jacs.9b11109. Epub 2019 Dec 16.

Colloidal Crystal "Alloys"

Colloidal Crystal "Alloys"

Shunzhi Wang et al. J Am Chem Soc. .

Abstract

Colloidal crystal engineering with DNA has emerged as a powerful tool for precisely controlling the arrangement of nanoscale building blocks in three-dimensional superlattices, where nanoparticles densely modified with DNA can be viewed as "programmable atom equivalents" (PAEs). Although a wide variety of complementary DNA-modified nanoparticles, differentiated by size, shape, and composition, have been assembled into many "ionic" phases, the predictable formation of "alloy" phases remains elusive. Here, we describe the design of "colloidal crystal alloys" by combining gold PAEs of two different sizes (core diameters ranging from 5 to 40 nm) with complementary DNA-modified 2 nm gold nanoparticles (∼15 DNA strands/particle) that act as electron equivalents (EEs). Electron microscopy and small-angle X-ray scattering (SAXS) experiments reveal the formation of four classes of colloidal alloy equivalents: interstitial, substitutional, phase-separated, and intermetallic alloys. In these colloidal alloy phases, PAEs occupy lattice positions, while EEs stabilize the PAE lattice but do not occupy specific lattice sites. A set of chemical design guidelines emerge from this study, analogous to that of the Hume-Rothery rules, allowing for programmed synthesis of different alloy phases depending on PAE particle size ratio, DNA surface coverage, stoichiometric ratio, and thermal annealing pathways. Furthermore, we study the phase separation process via in situ SAXS experiments as well as ex situ electron microscopy, revealing the critical role of kinetics on the phase behavior in these systems.

PubMed Disclaimer

Publication types