Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 12;9(12):1128.
doi: 10.3390/ani9121128.

Tenebrio molitor and Zophobas morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome

Affiliations

Tenebrio molitor and Zophobas morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome

Abdelbasset Benzertiha et al. Animals (Basel). .

Abstract

This study was conducted to investigate the effect of insect full-fat meals added in relatively small amounts to a complete diet on the coefficients of apparent ileal digestibility, short-chain fatty acid (SCFA) concentrations, bacterial enzymes, and the microbiota community in the cecal digesta of broiler chickens. In total, 600 one-day-old female Ross 308 broiler chicks were randomly assigned to six dietary treatments with 10 replicate pens/treatment and 10 birds/pen. The groups consisted of a negative control (NC) with no additives; a positive control (PC; salinomycin 60 ppm), and supplementation with 0.2% or 0.3% Tenebrio molitor or Zophobas morio full-fat meals. Z. morio (0.2%) addition increased the activities of α- and β-glucosidase and α-galactosidase. Dietary insects significantly decreased the cecal counts of the Bacteroides-Prevotella cluster in comparison to those in the NC and PC. Whereas, Clostridium perfringens counts were increased in the broiler chickens subjected to the 0.3% Z. morio treatment. In conclusion, small amounts of full-fat insect meals added to broiler diets were capable of reducing the abundance of potentially pathogenic bacteria, such as the Bacteroides-Prevotella cluster and Clostridium perfringens. In addition, this supplementation was able to stimulate the GIT microbiome to produce enzymes, especially glycolytic enzymes.

Keywords: feed formulation; gut microbiota; insect meals; pancreatic enzymes; poultry.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Kogut M.H. The effect of microbiome modulation on the intestinal health of poultry. Anim. Feed Sci. Technol. 2019;250:32–40. doi: 10.1016/j.anifeedsci.2018.10.008. - DOI
    1. Kogut M.H., Arsenault R.J. Gut health: The new paradigm in food animal production. Front. Vet. Sci. 2016;3:71. doi: 10.3389/fvets.2016.00071. - DOI - PMC - PubMed
    1. Engberg R.M., Hedemann M.S., Jensen B.B. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. Br. Poult. Sci. 2002;43:569–579. doi: 10.1080/0007166022000004480. - DOI - PubMed
    1. Engberg R.M., Hedemann M.S., Steenfeldt S., Jensen B.B. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 2004;83:925–938. doi: 10.1093/ps/83.6.925. - DOI - PubMed
    1. Józefiak D., Rutkowski A., Martin S. Carbohydrate fermentation in the avian ceca: A review. Anim. Feed Sci. Technol. 2004;113:1–15. doi: 10.1016/j.anifeedsci.2003.09.007. - DOI

LinkOut - more resources