Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis
- PMID: 31843923
- PMCID: PMC6969523
- DOI: 10.1073/pnas.1910262116
Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis
Abstract
The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand-receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm's monthly cycle.
Keywords: GnRH; corazonin; lunar periodicity; regeneration; reproduction.
Copyright © 2020 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures




Comment in
-
Evolutionarily conserved peptides coordinate lunar phase and metabolism.Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):805-807. doi: 10.1073/pnas.1920432117. Epub 2019 Dec 30. Proc Natl Acad Sci U S A. 2020. PMID: 31888992 Free PMC article. No abstract available.
Similar articles
-
Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia.Gen Comp Endocrinol. 2014 Dec 1;209:35-49. doi: 10.1016/j.ygcen.2014.07.009. Epub 2014 Jul 21. Gen Comp Endocrinol. 2014. PMID: 25058364 Review.
-
Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways.Sci Rep. 2016 Jun 28;6:28788. doi: 10.1038/srep28788. Sci Rep. 2016. PMID: 27350121 Free PMC article.
-
The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems.Gen Comp Endocrinol. 2018 Aug 1;264:64-77. doi: 10.1016/j.ygcen.2017.06.007. Epub 2017 Jun 13. Gen Comp Endocrinol. 2018. PMID: 28622978 Review.
-
Functional Characterization of Gonadotropin-Releasing Hormone and Corazonin Signaling Systems in Pacific Abalone: Toward Reclassification of Invertebrate Neuropeptides.Neuroendocrinology. 2024;114(1):64-89. doi: 10.1159/000533662. Epub 2023 Sep 13. Neuroendocrinology. 2024. PMID: 37703838
-
Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti.Biochem Biophys Res Commun. 2018 Mar 4;497(2):550-557. doi: 10.1016/j.bbrc.2018.02.088. Epub 2018 Feb 10. Biochem Biophys Res Commun. 2018. PMID: 29432729
Cited by
-
Gonadotropin-releasing hormone-like receptor 2 inversely regulates somatic proteostasis and reproduction in Caenorhabditis elegans.Front Cell Dev Biol. 2022 Aug 29;10:951199. doi: 10.3389/fcell.2022.951199. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36105349 Free PMC article.
-
Timing the Juvenile-Adult Neurohormonal Transition: Functions and Evolution.Front Endocrinol (Lausanne). 2021 Feb 12;11:602285. doi: 10.3389/fendo.2020.602285. eCollection 2020. Front Endocrinol (Lausanne). 2021. PMID: 33643219 Free PMC article. Review.
-
Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts.Elife. 2021 Jun 21;10:e65279. doi: 10.7554/eLife.65279. Elife. 2021. PMID: 34151772 Free PMC article.
-
Evolutionarily conserved peptides coordinate lunar phase and metabolism.Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):805-807. doi: 10.1073/pnas.1920432117. Epub 2019 Dec 30. Proc Natl Acad Sci U S A. 2020. PMID: 31888992 Free PMC article. No abstract available.
-
Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior.PLoS Biol. 2024 Apr 11;22(4):e3002572. doi: 10.1371/journal.pbio.3002572. eCollection 2024 Apr. PLoS Biol. 2024. PMID: 38603542 Free PMC article.
References
-
- Colombani J., et al. , A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003). - PubMed
-
- Schultz T. F., Kay S. A., Circadian clocks in daily and seasonal control of development. Science 301, 326–328 (2003). - PubMed
-
- Ebling F. J. P., Barrett P., The regulation of seasonal changes in food intake and body weight. J. Neuroendocrinol. 20, 827–833 (2008). - PubMed
-
- Fenelon J. C., Banerjee A., Murphy B. D., Embryonic diapause: Development on hold. Int. J. Dev. Biol. 58, 163–174 (2014). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources