Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 15;12(2):2974-2982.
doi: 10.1021/acsami.9b18610. Epub 2020 Jan 2.

Polymerizable Ceramic Ink System for Thin Inkjet-Printed Dielectric Layers

Affiliations

Polymerizable Ceramic Ink System for Thin Inkjet-Printed Dielectric Layers

Timo Reinheimer et al. ACS Appl Mater Interfaces. .

Abstract

An innovative ceramic ink system for thin inkjet-printed dielectric layers is presented, with which it is possible to avoid undesired drying effects. This system contains surface-modified Ba0.6Sr0.4TiO3 (BST) particles, a cross-linking agent, and a thermal radical initiator. The polymerization starts immediately after the ink drop contacts the heated substrate and therefore leads to very homogeneous topographies. Since an organic/inorganic composite ink is used, no sintering is needed after printing and thus printing on flexible substrates is possible. A comparison of the printing and drying behavior between modified and nonmodified BST with the described ink system is performed. The successful surface modification is confirmed via X-ray photoelectron spectroscopy (XPS). Topographies of different printed structures are compared by white light interferometry, the occurring polymerization is confirmed by measurements with an oscillatory rheometer, layer thicknesses are determined by scanning electron microscopy (SEM) images, and the capacitance of a printed capacitor is measured via impedance spectroscopy. It is successfully shown that the developed ink system enables the production of thin ceramic layers (<1 μm) with very homogeneous topographies since undesired drying effects can be avoided. The printed dielectric layers on flexible substrates have a high ceramic content and a high permittivity of 40.

Keywords: ceramic/polymer composites; dielectrics; inkjet printing; printed capacitors; surface modification.

PubMed Disclaimer

LinkOut - more resources