HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA
- PMID: 31850845
- PMCID: PMC6946564
- DOI: 10.7554/eLife.52649
HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA
Abstract
APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.
Keywords: HIV-1 restriction; facilitated diffusion; force spectroscopy; molecular biophysics; none; oligomerization; protein-DNA binding; structural biology.
© 2019, Morse et al.
Conflict of interest statement
MM, MN, YF, LC, IR, MW No competing interests declared
Figures













References
-
- Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T, Kitamura S, Geertsema H, Chan DS, Hertz A, Iwatani Y, Levin JG, Musier-Forsyth K, Rouzina I, Williams MC. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nature Chemistry. 2014;6:28–33. doi: 10.1038/nchem.1795. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources