Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2019 Dec 18;19(1):330.
doi: 10.1186/s12883-019-1562-5.

Late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD): case reports and epidemiology of ETFDH gene mutations

Affiliations
Case Reports

Late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD): case reports and epidemiology of ETFDH gene mutations

Wei Chen et al. BMC Neurol. .

Abstract

Background: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a riboflavin-responsive lipid-storage myopathy caused by mutations in the EFTA, EFTB or ETFDH genes. We report a Chinese family of Southern Min origin with two affected siblings with late-onset riboflavin-responsive MADD due to a homozygous c.250G > A EFTDH mutation and review the genetic epidemiology of the c.250G > A mutation.

Case presentation: Both siblings presented with exercise-induced myalgia, progressive proximal muscle weakness and high levels of serum muscle enzymes and were initially diagnosed as polymyositis after a muscle biopsy. A repeat biopsy in one sibling subsequently showed features of lipid storage myopathy and genetic analysis identified a homozygous mutation (c.250G > A) in the ETFDH gene in both siblings and carriage of the same mutation by both parents. Glucocorticoid therapy led to improvement in muscle enzyme levels, but little change in muscle symptoms, and only after treatment with riboflavin was there marked improvement in exercise tolerance and muscle strength. The frequency and geographic distribution of the c.250G > A mutation were determined from a literature search for all previously reported cases of MADD with documented mutations. Our study found the c.250G > A mutation is the most common EFTDH mutation in riboflavin-responsive MADD (RR-MADD) and is most prevalent in China and South-East Asia where its epidemiology correlates with the distribution and migration patterns of the southern Min population in Southern China and neighbouring countries.

Conclusions: Mutations in ETFDH should be screened for in individuals with lipid-storage myopathy to identify patients who are responsive to riboflavin. The c.250G > A mutation should be suspected particularly in individuals of southern Min Chinese background.

Keywords: C.250G > A mutation; ETFDH gene; Epidemiology; Late-onset multiple acyl-CoA dehydrogenase deficiency; Lipid storage myopathy; Southern min population.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Sequencing of the electron transfer flavoprotein dehydrogenase gene of the two patients (a) and their parents (b), showed the same missense mutation of c.250G > A (p.A84T) in exon 3, chr4–159,603,421. In patient 1 and patient 2, the mutation was homozygous while in their parents it was heterozygous
Fig. 2
Fig. 2
Genetic epidemiology of the c.250G > A ETFDH mutation. Geographic distribution of the Southern Min population (highlighted in red); reported number of MADD case with confirmed ETFDH mutation; and the allele frequency of the c.250G > A ETFDH mutation among all reported ETFDH mutations in different regions of China and neighboring countries. The Southern Min people is believed to have migrated from middle China around Henan Province (origin) to the Southern Min region (first migration) over a thousand years ago, and further travelled to Southeast Asia and overseas in a second migration in the past centuries. Map downloaded and modified from Glottolog 4.1 edited by HMS, H&F, R& HPM, M/ CC BY https://glottolog.org/resource/languoid/id/minn1248.bigmap.html#3/23.63/115.88

References

    1. Olsen RK, Olpin SE, Andresen BS, Miedzybrodzka ZH, Pourfarzam M, Merinero B, et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain. 2007;130(Pt 8):2045–2054. doi: 10.1093/brain/awm135. - DOI - PubMed
    1. Chokchaiwong S, Kuo YT, Hsu SP, Hsu YC, Lin SH, Zhong WB, et al. ETF-QO mutants uncoupled fatty acid beta-oxidation and mitochondrial bioenergetics leading to lipid pathology. Cells. 2019;8:2. doi: 10.3390/cells8020106. - DOI - PMC - PubMed
    1. Olsen RK, Andresen BS, Christensen E, Bross P, Skovby F, Gregersen N. Clear relationship between ETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Hum Mutat. 2003;22(1):12–23. doi: 10.1002/humu.10226. - DOI - PubMed
    1. Xi J, Wen B, Lin J, Zhu W, Luo S, Zhao C, et al. Clinical features and ETFDH mutation spectrum in a cohort of 90 Chinese patients with late-onset multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 2014;37(3):399–404. doi: 10.1007/s10545-013-9671-6. - DOI - PubMed
    1. Grunert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme a dehydrogenase deficiency. Orphanet J Rare Dis. 2014;9:117. doi: 10.1186/s13023-014-0117-5. - DOI - PMC - PubMed

Publication types

Substances

LinkOut - more resources