Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar:258:113760.
doi: 10.1016/j.envpol.2019.113760. Epub 2019 Dec 9.

Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations

Affiliations

Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations

Yufeng Mao et al. Environ Pollut. 2020 Mar.

Abstract

Nanoplastics are inevitably released into aquatic environments due to their extensive use and the continuous fragmentation of plastics. Therefore, it is imperative to understand the aggregation behaviours that determine the transport and fate of nanoplastics in aquatic environments. In this study, the effects of various metal cations, pH, aging and extracellular polymeric substances (EPS) on the aggregation of polystyrene nanoplastics (nano-PS) in aqueous solutions were systematically evaluated based on aggregation kinetics experiments and Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculation. The concentration, valence and hydration ability of metal cations jointly affected the aggregation of nano-PS. The critical coagulation concentration (CCC) of nano-PS was significantly higher than the ionic strengths in aquatic environments, indicating that the aggregation rate of nano-PS is relatively low in aquatic environments. The results of the aggregation kinetics experiments were consistent with DLVO theory, which showed that the energy barrier of nano-PS was dependent on electrostatic repulsion forces and van der Waals forces, and increased with pH. Nano-PS was artificially aged by UV-H2O2, which reduced the hydrophobic nature of the particle surfaces, consequently enhancing the stability of the nanoplastics. EPS (excreted from Chlorella pyrenoidosa) decreased the aggregation rates of nano-PS due to steric effects, which was confirmed by the extend DLVO model. Our results highlight the high stability of nano-PS in aquatic environments, which could help facilitate the evaluation of their environmental impact.

Keywords: Aggregation; Aging; EPS; Metal cations; Nanoplastics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors have declared no conflict of interest.

LinkOut - more resources