CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish
- PMID: 31858786
- PMCID: PMC7749997
- DOI: 10.1021/acs.chemrestox.9b00346
CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish
Abstract
The transcription factor Nrf2a induces a cellular antioxidant response and provides protection against chemical-induced oxidative stress, as well as playing a critical role in development and disease. Zebrafish are a powerful model to study the role of Nrf2a in these processes but have been limited by reliance on transient gene knockdown techniques or mutants with only partial functional alteration. We developed several lines of zebrafish carrying different null (loss of function, LOF) or hyperactive (gain of function, GOF) mutations to facilitate our understanding of the Nrf2a pathway in protecting against oxidative stress. The mutants confirmed Nrf2a dependence for induction of the antioxidant genes gclc, gstp, prdx1, and gpx1a and identified a role for Nrf2a in the baseline expression of these genes, as well as for sod1. Specifically, the 4-fold induction of gstp by tert-butyl hydroperoxide (tBHP) in wild type fish was abolished in LOF mutants. In addition, baseline gstp expression in GOF mutants increased by 12.6-fold and in LOF mutants was 0.8-fold relative to wild type. Nrf2a LOF mutants showed increased sensitivity to the acute toxicity of cumene hydroperoxide (CHP) and tBHP throughout the first 4 days of development. Conversely, GOF mutants were less sensitive to CHP toxicity during the first 4 days of development and were protected against the toxicity of both hydroperoxides after 4 dpf. Neither gain nor loss of Nrf2a modulated the toxicity of R-(-)-carvone (CAR), despite the ability of this compound to potently induce Nrf2a-dependent antioxidant genes. Similar to other species, GOF zebrafish mutants exhibited significant growth and survival defects. In summary, these new genetic tools can be used to facilitate the identification of downstream gene targets of Nrf2a, better define the role of Nrf2a in the toxicity of environmental chemicals, and further the study of diseases involving altered Nrf2a function.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Sies H, Berndt C, and Jones DP (2017) Oxidative Stress. Annu. Rev. Biochem 86, 715–748. - PubMed
-
- Toyokuni S (2016) The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int 66, 245–259. - PubMed
-
- Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, and MD RMT (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can. J. Cardiol 31, 631–641. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
