Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 20;16(12):e1002998.
doi: 10.1371/journal.pmed.1002998. eCollection 2019 Dec.

Polygenic risk-tailored screening for prostate cancer: A benefit-harm and cost-effectiveness modelling study

Affiliations

Polygenic risk-tailored screening for prostate cancer: A benefit-harm and cost-effectiveness modelling study

Tom Callender et al. PLoS Med. .

Abstract

Background: The United States Preventive Services Task Force supports individualised decision-making for prostate-specific antigen (PSA)-based screening in men aged 55-69. Knowing how the potential benefits and harms of screening vary by an individual's risk of developing prostate cancer could inform decision-making about screening at both an individual and population level. This modelling study examined the benefit-harm tradeoffs and the cost-effectiveness of a risk-tailored screening programme compared to age-based and no screening.

Methods and findings: A life-table model, projecting age-specific prostate cancer incidence and mortality, was developed of a hypothetical cohort of 4.48 million men in England aged 55 to 69 years with follow-up to age 90. Risk thresholds were based on age and polygenic profile. We compared no screening, age-based screening (quadrennial PSA testing from 55 to 69), and risk-tailored screening (men aged 55 to 69 years with a 10-year absolute risk greater than a threshold receive quadrennial PSA testing from the age they reach the risk threshold). The analysis was undertaken from the health service perspective, including direct costs borne by the health system for risk assessment, screening, diagnosis, and treatment. We used probabilistic sensitivity analyses to account for parameter uncertainty and discounted future costs and benefits at 3.5% per year. Our analysis should be considered cautiously in light of limitations related to our model's cohort-based structure and the uncertainty of input parameters in mathematical models. Compared to no screening over 35 years follow-up, age-based screening prevented the most deaths from prostate cancer (39,272, 95% uncertainty interval [UI]: 16,792-59,685) at the expense of 94,831 (95% UI: 84,827-105,630) overdiagnosed cancers. Age-based screening was the least cost-effective strategy studied. The greatest number of quality-adjusted life-years (QALYs) was generated by risk-based screening at a 10-year absolute risk threshold of 4%. At this threshold, risk-based screening led to one-third fewer overdiagnosed cancers (64,384, 95% UI: 57,382-72,050) but averted 6.3% fewer (9,695, 95% UI: 2,853-15,851) deaths from prostate cancer by comparison with age-based screening. Relative to no screening, risk-based screening at a 4% 10-year absolute risk threshold was cost-effective in 48.4% and 57.4% of the simulations at willingness-to-pay thresholds of GBP£20,000 (US$26,000) and £30,000 ($39,386) per QALY, respectively. The cost-effectiveness of risk-tailored screening improved as the threshold rose.

Conclusions: Based on the results of this modelling study, offering screening to men at higher risk could potentially reduce overdiagnosis and improve the benefit-harm tradeoff and the cost-effectiveness of a prostate cancer screening program. The optimal threshold will depend on societal judgements of the appropriate balance of benefits-harms and cost-effectiveness.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Overdiagnosed cases and prostate cancer deaths prevented with precision screening as compared to age-based screening.
Results based on 10,000 simulations.
Fig 2
Fig 2. Incremental cost and QALYs of precision and age-based screening compared with no screening.
Results based on 10,000 simulations. The solid lines describe the incremental costs incurred and QALYs gained of precision screening versus no screening, whilst the dashed lines represent the incremental costs and QALYs of age-based versus no screening. QALY, quality-adjusted life-year.

References

    1. US Preventive Services Task Force, Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, Caughey AB, et al. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2018;319: 1901–1913. 10.1001/jama.2018.3710 - DOI - PubMed
    1. Pashayan N, Duffy SW, Neal DE, Hamdy FC, Donovan JL, Martin RM, et al. Implications of polygenic risk-stratified screening for prostate cancer on overdiagnosis. Genet Med. 2015;17: 789–795. 10.1038/gim.2014.192 - DOI - PMC - PubMed
    1. UK National Screening Committee. The UK NSC recommendation on Prostate cancer screening/PSA testing in men over the age of 50 [Internet]. [cited 2018 Jul 13]. Available from: https://legacyscreening.phe.org.uk/prostatecancer
    1. Matejcic M, Saunders EJ, Dadaev T, Brook MN, Wang K, Sheng X, et al. Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nat Commun. 2018;9: 4616 10.1038/s41467-018-06863-1 - DOI - PMC - PubMed
    1. Eeles R, Goh C, Castro E, Bancroft E, Guy M, Olama AA Al, et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol. 2014;11: 18–31. 10.1038/nrurol.2013.266 - DOI - PubMed

Substances