Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan;69(1):3-11.
doi: 10.2337/db19-0321.

Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes

Affiliations
Review

Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes

Jennifer K Ferris et al. Diabetes. 2020 Jan.

Abstract

Diabetes is associated with a loss of somatosensory and motor function, leading to impairments in gait, balance, and manual dexterity. Data-driven neuroimaging studies frequently report a negative impact of diabetes on sensorimotor regions in the brain; however, relationships with sensorimotor behavior are rarely considered. The goal of this review is to consider existing diabetes neuroimaging evidence through the lens of sensorimotor neuroscience. We review evidence for diabetes-related disruptions to three critical circuits for movement control: the cerebral cortex, the cerebellum, and the basal ganglia. In addition, we discuss how central nervous system (CNS) degeneration might interact with the loss of sensory feedback from the limbs due to peripheral neuropathy to result in motor impairments in individuals with diabetes. We argue that our understanding of movement impairments in individuals with diabetes is incomplete without the consideration of disease complications in both the central and peripheral nervous systems. Neuroimaging evidence for disrupted central sensorimotor circuitry suggests that there may be unrecognized behavioral impairments in individuals with diabetes. Applying knowledge from the existing literature on CNS contributions to motor control and motor learning in healthy individuals provides a framework for hypothesis generation for future research on this topic.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms