Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;57(5):589-596.
doi: 10.1007/s00592-019-01462-y. Epub 2019 Dec 20.

The novel loss of function Ile354Val mutation in PPARG causes familial partial lipodystrophy

Affiliations

The novel loss of function Ile354Val mutation in PPARG causes familial partial lipodystrophy

Giuseppa Padova et al. Acta Diabetol. 2020 May.

Abstract

Aims: Familial partial lipodystrophy (FPLD) is a rare autosomal dominant disorder, mostly due to mutations in lamin A (LMNA) or in peroxisome proliferator-activated receptor gamma (PPARG) genes. In the present study, we aimed to identify and functionally characterize the genetic defect underlying FPLD in an Italian family presenting with several affected individuals in three consecutive generations.

Methods: Mutational screening by direct Sanger sequencing has been carried out on both LMNA and PPARG genes. In silico analyses and functional in vitro studies on transfected cell lines have been also performed to evaluate the biological impact of the identified mutation.

Results: We identified a novel PPARG missense mutation (i.e., PPARγ2 Ile354Val) segregating with FPLD in the study family. In silico analyses and in vitro experiments showed that probably altering the PPARγ2 ligand binding domain conformation, the Ile354Val aminoacid change leads to a significant reduction (i.e., ~ 30-35%) of transcriptional activity in the mutant receptor, with no evidences of a dominant negative effect on the wild-type receptor.

Conclusions: Our present data extend the spectrum of PPARG mutations responsible for FPLD3 and reinforce the notion that even loss of function mutations affecting transcriptional activity to an extent lower than that observed in the case of haploinsufficiency are able to cause a severe FPLD3 phenotype.

Keywords: Aberrant adipogenesis; Autosomal dominant diseases; Monogenic diabetes; Severe insulin resistance; Thiazolinediones.

PubMed Disclaimer

LinkOut - more resources