Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;72(3):923-939.
doi: 10.1002/hep.31076. Epub 2020 Jun 30.

TMPRSS4 Drives Angiogenesis in Hepatocellular Carcinoma by Promoting HB-EGF Expression and Proteolytic Cleavage

Affiliations

TMPRSS4 Drives Angiogenesis in Hepatocellular Carcinoma by Promoting HB-EGF Expression and Proteolytic Cleavage

Zhao-Ru Dong et al. Hepatology. 2020 Sep.

Abstract

Background and aims: Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor family, plays a pivotal role in the progression of several malignancies, but its role and regulatory mechanisms in hepatocellular carcinoma (HCC) remain obscure. Here, we report that transmembrane protease serine 4 (TMPRSS4) significantly enhanced the expression and proteolytic cleavage of HB-EGF to promote angiogenesis and HCC progression.

Approach and results: A mechanistic analysis revealed that TMPRSS4 not only increased the transcriptional and translational levels of HB-EGF precursor, but also promoted its proteolytic cleavage by enhancing matrix metallopeptidase 9 expression through the EGF receptor/Akt/mammalian target of rapamycin/ hypoxia-inducible factor 1 α signaling pathway. In addition, HB-EGF promoted HCC proliferation and invasion by the EGF receptor/phosphoinositide 3-kinase/Akt signaling pathway. The level of HB-EGF in clinical samples of serum or HCC tissues from patients with HCC was positively correlated with the expression of TMPRSS4 and the microvessel density, and was identified as a prognostic factor for overall survival and recurrence-free survival, which suggests that HB-EGF can serve as a potential therapeutic target for HCC. More importantly, we provide a demonstration that treatment with the HB-EGF inhibitor cross-reacting material 197 alone or in combination with sorafenib can significantly suppress angiogenesis and HCC progression.

Conclusions: HB-EGF can be regulated by TMPRSS4 to promote HCC proliferation, invasion, and angiogenesis, and the combination of the HB-EGF inhibitor cross-reacting material 197 with sorafenib might be used for individualized treatment of HCC.

PubMed Disclaimer

References

    1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391:1301-1314.
    1. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163-1173.
    1. Flynn MJ, Sayed AA, Sharma R, Siddique A, Pinato DJ. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma. Hepatology 2019;69:2258-2270.
    1. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (keynote-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-952.
    1. Zhang H. Might sorafenib combined with radiotherapy be better option for treating hepatocellular carcinoma with portal vein tumour thrombosis? Liver Int 2018;38:380.

Publication types

MeSH terms