Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Nov-Dec;53(6):954-967.
doi: 10.1134/S002689841906003X.

[The Role of Mutant RNA in the Pathogenesis of Huntington's Disease and Other Polyglutamine Diseases]

[Article in Russian]
Affiliations
Free article
Review

[The Role of Mutant RNA in the Pathogenesis of Huntington's Disease and Other Polyglutamine Diseases]

[Article in Russian]
A N Bogomazova et al. Mol Biol (Mosk). 2019 Nov-Dec.
Free article

Abstract

Polyglutamine diseases are rare, inherited neurodegenerative pathologies that arise as a result of expansion of trinucleotide CAG repeats in the coding segment of certain genes. This expansion leads to the appearance of mRNA with abnormally long repetitive CAG triplets (mCAG-RNA) and proteins with polyglutamine (PolyQ) tracts in the cells, which is why these pathologies are commonly termed polyglutamine diseases, or PolyQ diseases. To date, nine PolyQ diseases have been described: Huntington's disease, dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and six different types of spinocerebellar ataxia (SCA 1,2,3,6,7, and 17). PolyQ diseases lead to serious, constantly progressing dysfunctions of the nervous and/or muscular systems, and there currently exists no efficacious therapy for any of them. Recent studies have convincingly shown that mCAG-RNA can actively participate in the pathological process during the development of PolyQ diseases. Mutant RNA is involved in a wide range of molecular mechanisms, ultimately leading to disruption of the functions of transcription, splicing, translation, cytosol structure, RNA transport from the nucleus to the cytoplasm, and, finally, to neurodegeneration. This review discusses the involvement of mutant mCAG-RNA in neurodegenerative processes in PolyQ diseases.

Keywords: Huntington's disease; RNA foci; expansion of trinucleotide repeats; neurodegeneration; polyglutamine diseases.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources