Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan;113(1):234-236.
doi: 10.1016/j.fertnstert.2019.09.023. Epub 2019 Dec 26.

A step towards the automation of intracytoplasmic sperm injection: real time confirmation of mouse and human oocyte penetration and viability by electrical resistance measurement

Affiliations
Free article

A step towards the automation of intracytoplasmic sperm injection: real time confirmation of mouse and human oocyte penetration and viability by electrical resistance measurement

Amir Mor et al. Fertil Steril. 2020 Jan.
Free article

Abstract

Objective: To evaluate if oocyte penetration and viability can be confirmed by an electrical resistance increase. Automated (robotic) intracytoplasmic sperm injection (ICSI) requires confirmation of oolemma penetration before sperm injection. Visual assessment using image processing algorithms have been developed but remain unreliable. We hypothesized that an increase in electrical resistance upon oolemma piercing during ICSI can serve as an objective tool to confirm oocyte penetration and viability.

Design: Experimental study.

Setting: Research laboratory in an academic center.

Patients/animals: Oocytes from female mice and women undergoing oocyte retrieval procedure.

Intervention: Oolemma piercing attempts with the ICSI pipette were performed by advancing the pipette towards mature (metaphase II) oocytes collected from 6 to 12-week-old mice and immature (germinal vesicle stage and metaphase I) oocytes donated by women who underwent oocyte retrieval. Electrical resistance was measured using a conventional electrophysiological setup that includes an electrical resistance meter and two electrical wires located in the lumina of the holding and ICSI pipettes.

Main outcome measure(s): The measure of interest was the change in electrical resistance (ΔR) before and after advancing the ICSI pipette in an attempt to penetrate an oocyte. The experiments of resistance measurements were done in 3 steps: Step 1 (proof of concept), penetrated vs. non-penetrated mouse oocytes. Step 2, mouse oocytes with visually intact oolemma vs. fragmented mouse oocytes. Step 3, human oocytes with visually intact oolemma vs. fragmented human oocytes. For each group, median and range (in parenthesis) of ΔR were determined in MΩ. Mann-Whitney test was performed to compare the two groups in each step.

Results: In Step 1, the penetrated mouse oocytes showed a statistically significant resistance increase compared to the non-penetrated ones (n = 20, median ΔR = 7.79 [2.57 - 106.00] vs. n = 15, median ΔR = 0.10 [-0.06 - 0.69], respectively. In Step 2, the mouse oocytes with visually intact oolemma showed a statistically significant resistance increase compared to the fragmented ones (n = 45, median ΔR = 6.5 [0.1 - 191.7] vs. n = 13, median ΔR = 0.1 [-0.3 - 2.2], respectively. In Step 3, the human oocytes with visually intact oolemma showed a statistically significant resistance increase compared to the fragmented ones (n = 96, median ΔR = 1.92 [-0.05 - 6.70] vs. n = 17, median ΔR = 0.11 [0.00 - 0.30], respectively.

Conclusions: An electrical resistance increase can serve as a reliable tool to confirm oocyte penetration and viability, independent of optical visualization. Following further validation and safety assessment, this technology can potentially be integrated into manual and robotic ICSI systems.

Keywords: Automated; ICSI; electrical resistance; electrophysiology; robotic.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources