Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb 7;432(3):643-652.
doi: 10.1016/j.jmb.2019.11.025. Epub 2019 Dec 27.

TADs and Their Borders: Free Movement or Building a Wall?

Affiliations
Review

TADs and Their Borders: Free Movement or Building a Wall?

Li-Hsin Chang et al. J Mol Biol. .

Abstract

The tridimensional (3D) organization of mammalian genomes combines structures from different length scales. Within this organization, Topologically Associating Domains (TADs) are visible in Hi-C heat maps at the sub-megabase scale. The integrity of TADs is important for correct gene expression, but in a context-dependent and variable manner. The correct structure and function of TADs require the binding of the CTCF protein at both borders, which appears to block an active and dynamic mechanism of "Cohesin-mediated loop extrusion." As a result, mammalian TADs appear as so-called "loop domains" in Hi-C data, which are the focus of this review. Here, we present a reanalysis of TADs from three "golden-standard" mammalian Hi-C data sets. Despite the prominent presence of TADs in Hi-C heat maps from all studies, we find consistently that regions within these domains are only moderately insulated from their surroundings. Moreover, single-cell Hi-C and superresolution microscopy have revealed that the structure of TADs and the position of their borders can vary from cell to cell. The function of TADs as units of gene regulation may thus require additional aspects, potentially incorporating the mechanism of loop extrusion as well. Recent developments in single-cell and multi-contact genomics and superresolution microscopy assays will be instrumental to link TAD formation and structure to their function in transcriptional regulation.

Keywords: CTCF; Hi-C; TADs; loop extrusion; topologically associating domains.

PubMed Disclaimer

Publication types

LinkOut - more resources