Genome analysis and knowledge-driven variant interpretation with TGex
- PMID: 31888639
- PMCID: PMC6937949
- DOI: 10.1186/s12920-019-0647-8
Genome analysis and knowledge-driven variant interpretation with TGex
Abstract
Background: The clinical genetics revolution ushers in great opportunities, accompanied by significant challenges. The fundamental mission in clinical genetics is to analyze genomes, and to identify the most relevant genetic variations underlying a patient's phenotypes and symptoms. The adoption of Whole Genome Sequencing requires novel capacities for interpretation of non-coding variants.
Results: We present TGex, the Translational Genomics expert, a novel genome variation analysis and interpretation platform, with remarkable exome analysis capacities and a pioneering approach of non-coding variants interpretation. TGex's main strength is combining state-of-the-art variant filtering with knowledge-driven analysis made possible by VarElect, our highly effective gene-phenotype interpretation tool. VarElect leverages the widely used GeneCards knowledgebase, which integrates information from > 150 automatically-mined data sources. Access to such a comprehensive data compendium also facilitates TGex's broad variant annotation, supporting evidence exploration, and decision making. TGex has an interactive, user-friendly, and easy adaptive interface, ACMG compliance, and an automated reporting system. Beyond comprehensive whole exome sequence capabilities, TGex encompasses innovative non-coding variants interpretation, towards the goal of maximal exploitation of whole genome sequence analyses in the clinical genetics practice. This is enabled by GeneCards' recently developed GeneHancer, a novel integrative and fully annotated database of human enhancers and promoters. Examining use-cases from a variety of TGex users world-wide, we demonstrate its high diagnostic yields (42% for single exome and 50% for trios in 1500 rare genetic disease cases) and critical actionable genetic findings. The platform's support for integration with EHR and LIMS through dedicated APIs facilitates automated retrieval of patient data for TGex's customizable reporting engine, establishing a rapid and cost-effective workflow for an entire range of clinical genetic testing, including rare disorders, cancer predisposition, tumor biopsies and health screening.
Conclusions: TGex is an innovative tool for the annotation, analysis and prioritization of coding and non-coding genomic variants. It provides access to an extensive knowledgebase of genomic annotations, with intuitive and flexible configuration options, allows quick adaptation, and addresses various workflow requirements. It thus simplifies and accelerates variant interpretation in clinical genetics workflows, with remarkable diagnostic yield, as exemplified in the described use cases. TGex is available at http://tgex.genecards.org/.
Keywords: Biomedical knowledgebase; Clinical variant interpretation and classification; Exome sequencing; Hamartomatous polyposis; Next generation sequencing analysis; Non-coding variants; Rare genetic diseases; Whole genome sequencing.
Conflict of interest statement
YG and YM are CEO and Vice President respectively (and co-founders) of LifeMap Sciences Inc., California, USA (LMS), OZ is the senior software engineer and DD is the clinical genetics product manager at LMS. LMS holds an exclusive license from the Yeda Research and Development Company Ltd., the commercial arm of the Weizmann Institute of Science (WIS), to market GeneCards Suite products, which are derived from the research of DL’s group at WIS, which is supported, among others, by a grant from LMS. SF, MS, RB, MT, and TIS are members of DL’s group. All authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
Figures
References
-
- Ormondroyd E, Mackley MP, Blair E, Craft J, Knight JC, Taylor JC, et al. "not pathogenic until proven otherwise": perspectives of UK clinical genomics professionals toward secondary findings in context of a genomic medicine multidisciplinary team and the 100,000 Genomes Project. Genet Med. 2018;20(3):320–328. doi: 10.1038/gim.2017.157. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
