Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May-Jun;77(3):499-507.
doi: 10.1016/j.jsurg.2019.11.008. Epub 2019 Dec 28.

Application of Advanced Bioinformatics to Understand and Predict Burnout Among Surgical Trainees

Affiliations

Application of Advanced Bioinformatics to Understand and Predict Burnout Among Surgical Trainees

Vadim Kurbatov et al. J Surg Educ. 2020 May-Jun.

Abstract

Objective: Physician burnout, including surgical trainees, is multidimensional. Input variables used to predict burnout include grit, exhaustion, and financial stress. Each instrument has intrinsic limitations of scope and strength. We hypothesize that bioinformatics methods borrowed from oncogenetics may allow meta-analysis of existing predictive tools to improve identification of subpopulations at highest risk of burnout.

Design: A composite survey was created using widely accepted instruments: demographic factors, burnout using the Single-Item Maslach Burnout Inventory Emotional Exhaustion Measure, grit using the Duckworth Grit Scale, occupational fatigue using the Occupational Fatigue Exhaustion/Recovery Scale, financial well-being, perceptions of physician leadership, and attitudes towards robotic surgery. Surveys were analyzed using k-means analysis and supervised/unsupervised clustering.

Setting: Yale General Surgery Residency.

Participants: Survey participants consisted of Yale General Surgery residents. Of 70 residents, 53 responded (75.7%). Males comprised 57.1% and each postgraduate year had majority representation, 68.8% to 100%.

Results: Unsupervised hierarchical clustering showed heterogeneous resident answer patterns and suggested clusters of responders. To define groups of dissimilar responders, we performed k-means clustering, testing 15 iterations with 50 attempts. The analysis revealed 3 discrete clusters of responders with differential risk for burnout (p = 0.021). The highest risk group demonstrated the lowest grit score, low interest in innovation and leadership, higher financial stress, and concordantly, the highest rates of anxiety, dread, and self-reported burnout. (p = 0.0004; 0.0014; 0.1217; 0.0625; 0.021; 0.0011; 0.0224) CONCLUSIONS: The limited scope of common tools aiming to predict burnout constrains their utility. The machine-learning technique of cluster analysis organizes compound data to describe complex outcomes such as oncologic risks. We apply this analysis technique to create a composite predictor of burnout among surgical residents. Our method determines subgroups of residents sharing unique traits predictive of burnout. Residencies can use this tool to allocate resources to best support resident well-being.

Keywords: bioinformatics; burnout; cluster analysis; principal component analysis; surgical residency.

PubMed Disclaimer

LinkOut - more resources