Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul/Aug;36(6):376-383.
doi: 10.1089/jop.2019.0105. Epub 2019 Dec 5.

Ophthalmic Applications of Cerium Oxide Nanoparticles

Affiliations
Review

Ophthalmic Applications of Cerium Oxide Nanoparticles

Rita Maccarone et al. J Ocul Pharmacol Ther. 2020 Jul/Aug.

Abstract

Cerium oxide nanoparticles (CeO2-NPs; or nanoceria) have been largely studied for biomedical applications due to their peculiar auto-regenerative antioxidant activity. This review focuses on ophthalmic applications of nanoceria. Many in vivo data indicate that nanoceria protect the retina from neurodegeneration. In particular, they have been tested in animal models of age-related macular degeneration and retinitis pigmentosa and their neuroprotective properties have been shown to persist for a long time, without any collateral effects. In vitro cytotoxicity studies have shown that CeO2-NPs could be safe for lens cells and could represent a new therapy for cataract treatment, but further studies are needed. To date, different pharmaceutical formulations based on nanoceria have been created looking at future clinical ophthalmic applications, such as water-soluble nanoceria, glycol chitosan-coated ceria nanoparticles (GCCNPs), and alginate-gelatin hydrogel loaded GCCNPs. GCCNPs were also effective in preventing choroidal neovascularization in vivo. Based on the nanosize of nanoceria, corneal permeation could be achieved to allow topical treatment of nanoceria. PEGylation and encapsulation in liposomes represent the main strategies to support corneal permeation, without altering nanoceria chemical-physical properties. Based on their great antioxidant properties, safety, and nanosize, nanoceria represent a new potential therapeutic for the treatment of several eye disorders.

Keywords: eye; lens; nanoceria; nanomedicine; nanotechnology; retina.

PubMed Disclaimer

MeSH terms

LinkOut - more resources