Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 31;14(12):e0226852.
doi: 10.1371/journal.pone.0226852. eCollection 2019.

Somatic mutations in intracranial arteriovenous malformations

Affiliations

Somatic mutations in intracranial arteriovenous malformations

Jeremy A Goss et al. PLoS One. .

Abstract

Background: Intracranial arteriovenous malformation (AVM) is a common cause of primary intracerebral hemorrhage in young adults. Lesions typically are sporadic and contain somatic mutations in KRAS or BRAF. The purpose of this study was to identify somatic mutations in a cohort of participants with brain AVM and to determine if any genotype-phenotype associations exist.

Methods: Human brain AVM specimens (n = 16) were collected during a clinically-indicated procedure and subjected to multiplex targeted sequencing using molecular inversion probe (MIP-seq) for mutations in KRAS, BRAF, HRAS, NRAS, and MAP2K1. Endothelial cells (ECs) were separated from non-ECs by immune-affinity purification. Droplet digital PCR (ddPCR) was used to confirm mutations and to screen for mutations that may have been missed by MIP-seq. Patient and AVM characteristics were recorded.

Results: We detected somatic mutations in 10 of 16 specimens (63%). Eight had KRAS mutations [G12D (n = 5), G12V (n = 3)] and two had BRAF mutations [V600E (n = 1), Q636X (n = 1)]. We found no difference in age, sex, presenting symptom, AVM location, or AVM size between patients with a confirmed mutation and those without. Nor did we observe differences in these features between patients with KRAS or BRAF mutations. However, two patients with BRAF mutations presented at an older age than other study participants.

Conclusions: Somatic mutations in KRAS and, less commonly in BRAF, are found in many but not all intracranial AVM samples. Currently, there are no obvious genotype-phenotype correlations that can be used to predict whether a somatic mutation will be detected and, if so, which gene will be mutated.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

References

    1. Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, Mulliken JB, et al. Somatic MAP2K1 Mutations Are Associated with Extracranial Arteriovenous Malformation. Am J Hum Genet. 2017;100: 546–554. 10.1016/j.ajhg.2017.01.018 - DOI - PMC - PubMed
    1. Berman MF, Sciacca RR, Pile-Spellman J, Stapf C, Connolly ES, Mohr JP, et al. The epidemiology of brain arteriovenous malformations [Internet]. Neurosurgery. 2000. pp. 389–397. 10.1097/00006123-200008000-00023 - DOI - PubMed
    1. Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124: 1900–26. 10.1093/brain/124.10.1900 - DOI - PubMed
    1. McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: An overview of diagnosis, management, and pathogenesis. Genetics in Medicine. 2011. pp. 607–616. 10.1097/GIM.0b013e3182136d32 - DOI - PubMed
    1. Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, et al. Capillary Malformation–Arteriovenous Malformation, a New Clinical and Genetic Disorder Caused by RASA1 Mutations. Am J Hum Genet. 2003;73: 1240–1249. 10.1086/379793 - DOI - PMC - PubMed

Publication types

Substances