Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases
- PMID: 31895126
- PMCID: PMC9204384
- DOI: 10.1097/BOR.0000000000000687
Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases
Abstract
Purpose of review: The cause of autoimmune diseases remains incompletely understood. Here, we highlight recent advances in the role of proinflammatory metabolic pathways in autoimmune disease, including treatment with antioxidants and mechanistic target of rapamycin (mTOR) inhibitors.
Recent findings: Recent studies show that mTOR pathway activation, glucose utilization, mitochondrial oxidative phosphorylation, and antioxidant defenses play critical roles in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, immune thrombocytopenia, Sjögren's syndrome, large vessel vasculitis, and systemic lupus erythematosus. mTOR activity leads to Th1 and Th17 cell proliferation, Treg depletion, plasma cell differentiation, macrophage dysfunction, and increased antibody and immune complex production, ultimately resulting in tissue inflammation. mTOR also affects the function of connective tissue cells, including fibroblast-like synoviocytes, endothelial cells, and podocytes. mTOR inhibition via rapamycin and N-acetylcysteine, and blockade of glucose utilization show clinical efficacy in both mouse models and clinical trials, such as systemic lupus erythematosus.
Summary: The mTOR pathway is a central regulator of growth and survival signals, integrating environmental cues to control cell proliferation and differentiation. Activation of mTOR underlies inflammatory lineage specification, and mTOR blockade-based therapies show promising efficacy in several autoimmune diseases.
Conflict of interest statement
Conflicts of Interest
None
Figures
References
-
- Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6. - PubMed
-
- Martel RR, Klicius J, Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol. 1977;55(1):48–51. - PubMed
-
- Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756–8. - PubMed
-
- Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35–43. - PubMed
-
- Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815–22. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
