Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019:1201:23-47.
doi: 10.1007/978-3-030-31206-0_2.

Genomic Instability of iPSCs and Challenges in Their Clinical Applications

Affiliations
Review

Genomic Instability of iPSCs and Challenges in Their Clinical Applications

Masahito Yoshihara et al. Adv Exp Med Biol. 2019.

Abstract

Generation of human-induced pluripotent stem cells (iPSCs) from somatic cells has opened the possibility to design novel therapeutic approaches. In 2014, the first-in-human clinical trial of iPSC-based therapy was conducted. However, the transplantation for the second patient was discontinued at least in part due to genetic aberrations detected in iPSCs. Moreover, many studies have reported genetic aberrations in iPSCs with the rapid progress in genomic technologies. The presence of genomic instability raises serious safety concerns and can hamper the advancement of iPSC-based therapies. Here, we summarize our current knowledge on genomic instability of iPSCs and challenges in their clinical applications. In view of the recent expansion of stem cell therapies, it is crucial to gain deeper mechanistic insights into the genetic aberrations, ranging from chromosomal aberrations, copy number variations to point mutations. On the basis of their origin, these genetic aberrations in iPSCs can be classified as (i) preexisting mutations in parental somatic cells, (ii) reprogramming-induced mutations, and (iii) mutations that arise during in vitro culture. However, it is still unknown whether these genetic aberrations in iPSCs can be an actual risk factor for adverse effects. Intersection of the genomic data on iPSCs with the patients' clinical follow-up data will help to produce evidence-based criteria for clinical application. Furthermore, we discuss novel approaches to generate iPSCs with fewer genetic aberrations. Better understanding of iPSCs from both basic and clinical aspects will pave the way for iPSC-based therapies.

Keywords: Clinical application; Genomic instability; Induced pluripotent stem cells.

PubMed Disclaimer

MeSH terms

LinkOut - more resources