Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar;19(3):185-199.
doi: 10.1038/s41573-019-0051-2. Epub 2020 Jan 3.

'Off-the-shelf' allogeneic CAR T cells: development and challenges

Affiliations
Review

'Off-the-shelf' allogeneic CAR T cells: development and challenges

S Depil et al. Nat Rev Drug Discov. 2020 Mar.

Abstract

Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.

PubMed Disclaimer

References

    1. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009). - DOI - PubMed - PMC
    1. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018). - DOI - PubMed - PMC
    1. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018). This article reports the results from a phase II study that showed an overall response rate of 81% with the CD19 CAR-T cell therapy tisagenlecleucel in paediatric and young adult ALL. - DOI - PubMed - PMC
    1. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). This article reports the results from a phase II study that showed an objective response rate of 82% with the CD19 CAR-T cell therapy axicabtagene ciloleucel in refractory large B cell lymphoma. - DOI - PubMed - PMC
    1. Köhl, U., Arsenieva, S., Holzinger, A. & Abken, H. CAR T cells in trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum. Gene Ther. 29, 559–568 (2018). - DOI - PubMed - PMC

MeSH terms

Substances

LinkOut - more resources